alexhf90's picture
informaci贸n de tarjet y fuente de la data.
1554921
|
raw
history blame
2.02 kB
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Clasificacion_sentimientos
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Clasificacion_sentimientos
This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3399
- Accuracy: 0.9428
## Model description
Se entrena un modelo que es capaz de clasificar si es un comentario postivo o negativo.
## Intended uses & limitations
More information needed
## Training and evaluation data
Se entren贸 el modelo usando comentarios de peliculas de la p谩gina $https://www.filmaffinity.com/es/main.html$
- Estos comentarios estan en la base de datos alojada en Kaggle,
url : https://www.kaggle.com/ricardomoya/criticas-peliculas-filmaffinity-en-espaniol/code
## Training procedure
La variable review_rate se us贸 para clasificar los comentarios positivos y negativos as铆:
Positivos: los rating con 8,9,10.
Negativos: Los rating con 3,2,1.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2566 | 1.0 | 901 | 0.5299 | 0.8935 |
| 0.0963 | 2.0 | 1802 | 0.2885 | 0.9383 |
| 0.0133 | 3.0 | 2703 | 0.3546 | 0.9406 |
| 0.0002 | 4.0 | 3604 | 0.3399 | 0.9428 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6