alexgrigore's picture
Model save
5cc27b2 verified
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-good-gesturePhaseV12
    results: []

videomae-base-finetuned-good-gesturePhaseV12

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9544
  • Loss: 0.2487
  • Accuracy Hold: 1.0
  • Accuracy Stroke: 0.4286
  • Accuracy Recovery: 0.8947
  • Accuracy Preparation: 0.9811
  • Accuracy Unknown: 0.9286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 630

Training results

Training Loss Epoch Step Accuracy Validation Loss Accuracy Hold Accuracy Stroke Accuracy Recovery Accuracy Preparation Accuracy Unknown
1.1508 0.2016 127 0.6900 1.0099 0.0 0.0 0.0 1.0 0.0
0.7497 1.2016 254 0.7249 0.7448 0.3077 0.0 0.0 1.0 0.0
0.3044 2.2016 381 0.8603 0.4170 0.7692 0.0 0.5882 0.9620 0.6818
0.1617 3.2016 508 0.9127 0.3627 0.7308 0.1667 0.8824 0.9810 0.8636
0.0765 4.1937 630 0.9432 0.2175 0.8462 0.6667 0.8824 0.9747 0.9545

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1