alexgrigore's picture
Model save
23df469 verified
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-good-gesturePhaseV11
    results: []

videomae-base-finetuned-good-gesturePhaseV11

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9461
  • Loss: 0.1967
  • Accuracy Hold: 1.0
  • Accuracy Stroke: 0.4286
  • Accuracy Recovery: 0.8947
  • Accuracy Preparation: 0.9686
  • Accuracy Unknown: 0.9286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1260

Training results

Training Loss Epoch Step Accuracy Validation Loss Accuracy Hold Accuracy Stroke Accuracy Recovery Accuracy Preparation Accuracy Unknown
1.2097 0.1008 127 0.6900 1.0243 0.0 0.0 0.0 1.0 0.0
0.8 1.1008 254 0.6900 0.8717 0.0 0.0 0.0 1.0 0.0
0.5199 2.1008 381 0.7729 0.6725 0.0 0.0 0.1765 0.9810 0.8636
0.3134 3.1008 508 0.8428 0.4715 0.3077 0.0 0.4118 1.0 0.9091
0.1561 4.1008 635 0.8952 0.4363 0.7692 0.0 0.7059 1.0 0.6818
0.0429 5.1008 762 0.9432 0.2211 0.8846 0.5 0.7059 0.9937 0.9545
0.2294 6.1008 889 0.9476 0.2094 0.8846 0.1667 0.8824 1.0 0.9091
0.1214 7.1008 1016 0.9607 0.1586 0.8846 0.6667 0.8824 0.9937 0.9545
0.1478 8.1008 1143 0.9432 0.1607 0.8846 0.6667 0.8824 0.9684 0.9545
0.1156 9.0929 1260 0.9738 0.1177 1.0 0.6667 0.8824 0.9937 0.9545

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1