metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-good-gesturePhaseV11
results: []
videomae-base-finetuned-good-gesturePhaseV11
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.9461
- Loss: 0.1967
- Accuracy Hold: 1.0
- Accuracy Stroke: 0.4286
- Accuracy Recovery: 0.8947
- Accuracy Preparation: 0.9686
- Accuracy Unknown: 0.9286
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1260
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss | Accuracy Hold | Accuracy Stroke | Accuracy Recovery | Accuracy Preparation | Accuracy Unknown |
---|---|---|---|---|---|---|---|---|---|
1.2097 | 0.1008 | 127 | 0.6900 | 1.0243 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
0.8 | 1.1008 | 254 | 0.6900 | 0.8717 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
0.5199 | 2.1008 | 381 | 0.7729 | 0.6725 | 0.0 | 0.0 | 0.1765 | 0.9810 | 0.8636 |
0.3134 | 3.1008 | 508 | 0.8428 | 0.4715 | 0.3077 | 0.0 | 0.4118 | 1.0 | 0.9091 |
0.1561 | 4.1008 | 635 | 0.8952 | 0.4363 | 0.7692 | 0.0 | 0.7059 | 1.0 | 0.6818 |
0.0429 | 5.1008 | 762 | 0.9432 | 0.2211 | 0.8846 | 0.5 | 0.7059 | 0.9937 | 0.9545 |
0.2294 | 6.1008 | 889 | 0.9476 | 0.2094 | 0.8846 | 0.1667 | 0.8824 | 1.0 | 0.9091 |
0.1214 | 7.1008 | 1016 | 0.9607 | 0.1586 | 0.8846 | 0.6667 | 0.8824 | 0.9937 | 0.9545 |
0.1478 | 8.1008 | 1143 | 0.9432 | 0.1607 | 0.8846 | 0.6667 | 0.8824 | 0.9684 | 0.9545 |
0.1156 | 9.0929 | 1260 | 0.9738 | 0.1177 | 1.0 | 0.6667 | 0.8824 | 0.9937 | 0.9545 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1