roptimus-v1 / fine-tuning.py
alexghergh's picture
Add end-of-training model, README, tokenizer
abd6171 verified
# start with torchrun --nproc-per-node <n-gpu's> fine-tuning.py
import os
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
DataCollatorForLanguageModeling,
TrainingArguments,
Trainer,
BitsAndBytesConfig,
TrainerCallback,
)
from datasets import load_from_disk
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from peft.tuners.lora import LoraLayer
from accelerate import Accelerator
batch_size = 2
checkpoint = "google/gemma-2b"
data_dir = "dataset_ro_small_v1/"
save_dir = "gemma-2b-romanian-1.6gb-finetuned-qlora"
log_dir = "training_logs/"
# load dataset
tokenized_datasets = load_from_disk(f'tokenized_{data_dir}')
tokenized_datasets = tokenized_datasets.shuffle(seed=42)
print(tokenized_datasets)
# load quantized model
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_quant_dtype=torch.float16,
bnb_4bit_compute_dtype=torch.float16,
)
model = AutoModelForCausalLM.from_pretrained(
checkpoint,
load_in_8bit=False,
quantization_config=bnb_config,
device_map={ "": Accelerator().process_index }, # see https://github.com/huggingface/trl/issues/1348
torch_dtype=torch.float16,
trust_remote_code=True,
attn_implementation='sdpa',#'flash_attention_2',
use_cache=False,
)
model = prepare_model_for_kbit_training(model)
# load qlora config
lora_config = LoraConfig(
lora_alpha=32,
lora_dropout=0.1,
r=8,
bias="none",
task_type="CAUSAL_LM",
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# load tokenizer from checkpoint
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
tokenizer.pad_token = tokenizer.eos_token
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# training args
args = TrainingArguments(
output_dir='training_checkpoints/',
logging_dir=log_dir,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
evaluation_strategy='no',
logging_steps=100,
save_strategy='steps',
save_steps=100,
save_total_limit=10,
gradient_accumulation_steps=4,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={ "use_reentrant": False },
num_train_epochs=1,
warmup_steps=1_000,
weight_decay=0.001,
lr_scheduler_type='cosine',
learning_rate=1e-4,
max_grad_norm=0.3,
fp16=True,
ddp_find_unused_parameters=False,
)
# stop the training loop after 1000 updates
class StopCallback(TrainerCallback):
def on_step_end(self, args, state, control, **kwargs):
if state.global_step != 0 and state.global_step % 1000 == 0:
# stop training
control.should_training_stop = True
# train as usual
trainer = Trainer(
model=model,
args=args,
data_collator=data_collator,
train_dataset=tokenized_datasets['train'],
eval_dataset=tokenized_datasets['test'],
tokenizer=tokenizer,
)
trainer.add_callback(StopCallback)
print("Starting training...")
train_checkpoint = os.getenv("TRAIN_CHECKPOINT")
if train_checkpoint is not None:
trainer.train(train_checkpoint) # resume training from checkpoint dir
else:
trainer.train()
# save trainer state at end
torch.save(trainer.state.log_history, "trainer_log_history.pth")
model.save_pretrained(save_dir)
tokenizer.save_pretrained(save_dir)