ophelielacroix
commited on
Commit
•
506cddb
1
Parent(s):
3fc62b5
add README
Browse files
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- da
|
4 |
+
tags:
|
5 |
+
- bert
|
6 |
+
- pytorch
|
7 |
+
- sentiment
|
8 |
+
- polarity
|
9 |
+
license: CC-BY_4.0
|
10 |
+
datasets:
|
11 |
+
- Twitter Sentiment
|
12 |
+
- Europarl Sentiment
|
13 |
+
metrics:
|
14 |
+
- f1
|
15 |
+
---
|
16 |
+
|
17 |
+
# Danish BERT Tone for sentiment polarity detection
|
18 |
+
|
19 |
+
The BERT Tone model detects sentiment polarity (positive, neutral or negative) in Danish texts.
|
20 |
+
It has been finetuned on the pretrained Danish BERT model by BotXO.
|
21 |
+
|
22 |
+
See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-tone) for more details.
|
23 |
+
|
24 |
+
|
25 |
+
Here is how to use the model:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
29 |
+
|
30 |
+
model = BertForSequenceClassification.from_pretrained("DaNLP/da-bert-tone-sentiment-polarity")
|
31 |
+
tokenizer = BertTokenizer.from_pretrained("DaNLP/da-bert-tone-sentiment-polarity")
|
32 |
+
```
|
33 |
+
|
34 |
+
## Training data
|
35 |
+
|
36 |
+
The data used for training come from the [Twitter Sentiment](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#twitsent) and [EuroParl sentiment 2](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#europarl-sentiment2) datasets.
|
37 |
+
|