cause-bert-biocause / README.md
alenatz's picture
alenatz/cause-bert-biocause
2db5ea9 verified
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: cause-bert-biocause
    results: []

cause-bert-biocause

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4364
  • Precision: 0.1647
  • Recall: 0.3459
  • F1: 0.2231
  • Accuracy: 0.8160
  • Cause P: 0.1647
  • Cause R: 0.3459
  • Cause F1: 0.2231

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Cause P Cause R Cause F1
0.6498 0.25 20 0.6248 0.0544 0.1698 0.0824 0.7705 0.0544 0.1698 0.0824
0.6498 0.5 40 0.5229 0.0532 0.1572 0.0795 0.6600 0.0532 0.1572 0.0795
0.6498 0.75 60 0.4613 0.1190 0.2327 0.1574 0.8274 0.1190 0.2327 0.1574
0.6498 1.0 80 0.4376 0.1460 0.2956 0.1954 0.8145 0.1460 0.2956 0.1954
0.6498 1.25 100 0.4660 0.1829 0.2956 0.2260 0.8312 0.1829 0.2956 0.2260
0.6498 1.5 120 0.4523 0.1902 0.3899 0.2557 0.8148 0.1902 0.3899 0.2557
0.6498 1.75 140 0.4414 0.1756 0.3711 0.2384 0.8138 0.1756 0.3711 0.2384
0.6498 2.0 160 0.4364 0.1647 0.3459 0.2231 0.8160 0.1647 0.3459 0.2231

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.1.post100
  • Datasets 2.20.0
  • Tokenizers 0.15.1