Update README.md
Browse filesUpdate of the example inference code
README.md
CHANGED
@@ -26,6 +26,8 @@ It achieves the following results on the evaluation set:
|
|
26 |
|
27 |
```python
|
28 |
import os
|
|
|
|
|
29 |
from typing import List, Optional, Union, Dict
|
30 |
|
31 |
import tqdm
|
@@ -42,7 +44,6 @@ from transformers import (
|
|
42 |
Wav2Vec2Processor
|
43 |
)
|
44 |
|
45 |
-
|
46 |
class CustomDataset(torch.utils.data.Dataset):
|
47 |
def __init__(
|
48 |
self,
|
@@ -68,19 +69,19 @@ class CustomDataset(torch.utils.data.Dataset):
|
|
68 |
filepath = self.dataset[index]
|
69 |
else:
|
70 |
filepath = os.path.join(self.basedir, self.dataset[index])
|
71 |
-
|
72 |
speech_array, sr = torchaudio.load(filepath)
|
73 |
-
|
74 |
if speech_array.shape[0] > 1:
|
75 |
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
|
76 |
-
|
77 |
if sr != self.sampling_rate:
|
78 |
transform = torchaudio.transforms.Resample(sr, self.sampling_rate)
|
79 |
speech_array = transform(speech_array)
|
80 |
sr = self.sampling_rate
|
81 |
-
|
82 |
len_audio = speech_array.shape[1]
|
83 |
-
|
84 |
# Pad or truncate the audio to match the desired length
|
85 |
if len_audio < self.max_audio_len * self.sampling_rate:
|
86 |
# Pad the audio if it's shorter than the desired length
|
@@ -89,9 +90,9 @@ class CustomDataset(torch.utils.data.Dataset):
|
|
89 |
else:
|
90 |
# Truncate the audio if it's longer than the desired length
|
91 |
speech_array = speech_array[:, :self.max_audio_len * self.sampling_rate]
|
92 |
-
|
93 |
speech_array = speech_array.squeeze().numpy()
|
94 |
-
|
95 |
return {"input_values": speech_array, "attention_mask": None}
|
96 |
|
97 |
|
@@ -99,34 +100,37 @@ class CollateFunc:
|
|
99 |
def __init__(
|
100 |
self,
|
101 |
processor: Wav2Vec2Processor,
|
102 |
-
max_length: Optional[int] = None,
|
103 |
padding: Union[bool, str] = True,
|
104 |
pad_to_multiple_of: Optional[int] = None,
|
|
|
105 |
sampling_rate: int = 16000,
|
|
|
106 |
):
|
107 |
-
self.padding = padding
|
108 |
-
self.processor = processor
|
109 |
-
self.max_length = max_length
|
110 |
self.sampling_rate = sampling_rate
|
|
|
|
|
111 |
self.pad_to_multiple_of = pad_to_multiple_of
|
|
|
|
|
112 |
|
113 |
-
def __call__(self, batch: List):
|
114 |
-
|
115 |
-
|
116 |
-
for audio in batch:
|
117 |
-
input_tensor = self.processor(audio, sampling_rate=self.sampling_rate).input_values
|
118 |
-
input_tensor = np.squeeze(input_tensor)
|
119 |
-
input_features.append({"input_values": input_tensor})
|
120 |
|
121 |
-
batch = self.processor
|
122 |
-
|
|
|
|
|
123 |
padding=self.padding,
|
124 |
max_length=self.max_length,
|
125 |
pad_to_multiple_of=self.pad_to_multiple_of,
|
126 |
-
|
127 |
)
|
128 |
|
129 |
-
return
|
|
|
|
|
|
|
130 |
|
131 |
|
132 |
def predict(test_dataloader, model, device: torch.device):
|
@@ -175,15 +179,15 @@ def get_gender(model_name_or_path: str, audio_paths: List[str], label2id: Dict,
|
|
175 |
batch_size=16,
|
176 |
collate_fn=data_collator,
|
177 |
shuffle=False,
|
178 |
-
num_workers=
|
179 |
)
|
180 |
|
181 |
preds = predict(test_dataloader=test_dataloader, model=model, device=device)
|
182 |
|
183 |
return preds
|
184 |
|
185 |
-
|
186 |
model_name_or_path = "alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech"
|
|
|
187 |
audio_paths = [] # Must be a list with absolute paths of the audios that will be used in inference
|
188 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
189 |
|
|
|
26 |
|
27 |
```python
|
28 |
import os
|
29 |
+
import random
|
30 |
+
from glob import glob
|
31 |
from typing import List, Optional, Union, Dict
|
32 |
|
33 |
import tqdm
|
|
|
44 |
Wav2Vec2Processor
|
45 |
)
|
46 |
|
|
|
47 |
class CustomDataset(torch.utils.data.Dataset):
|
48 |
def __init__(
|
49 |
self,
|
|
|
69 |
filepath = self.dataset[index]
|
70 |
else:
|
71 |
filepath = os.path.join(self.basedir, self.dataset[index])
|
72 |
+
|
73 |
speech_array, sr = torchaudio.load(filepath)
|
74 |
+
|
75 |
if speech_array.shape[0] > 1:
|
76 |
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
|
77 |
+
|
78 |
if sr != self.sampling_rate:
|
79 |
transform = torchaudio.transforms.Resample(sr, self.sampling_rate)
|
80 |
speech_array = transform(speech_array)
|
81 |
sr = self.sampling_rate
|
82 |
+
|
83 |
len_audio = speech_array.shape[1]
|
84 |
+
|
85 |
# Pad or truncate the audio to match the desired length
|
86 |
if len_audio < self.max_audio_len * self.sampling_rate:
|
87 |
# Pad the audio if it's shorter than the desired length
|
|
|
90 |
else:
|
91 |
# Truncate the audio if it's longer than the desired length
|
92 |
speech_array = speech_array[:, :self.max_audio_len * self.sampling_rate]
|
93 |
+
|
94 |
speech_array = speech_array.squeeze().numpy()
|
95 |
+
|
96 |
return {"input_values": speech_array, "attention_mask": None}
|
97 |
|
98 |
|
|
|
100 |
def __init__(
|
101 |
self,
|
102 |
processor: Wav2Vec2Processor,
|
|
|
103 |
padding: Union[bool, str] = True,
|
104 |
pad_to_multiple_of: Optional[int] = None,
|
105 |
+
return_attention_mask: bool = True,
|
106 |
sampling_rate: int = 16000,
|
107 |
+
max_length: Optional[int] = None,
|
108 |
):
|
|
|
|
|
|
|
109 |
self.sampling_rate = sampling_rate
|
110 |
+
self.processor = processor
|
111 |
+
self.padding = padding
|
112 |
self.pad_to_multiple_of = pad_to_multiple_of
|
113 |
+
self.return_attention_mask = return_attention_mask
|
114 |
+
self.max_length = max_length
|
115 |
|
116 |
+
def __call__(self, batch: List[Dict[str, np.ndarray]]):
|
117 |
+
# Extract input_values from the batch
|
118 |
+
input_values = [item["input_values"] for item in batch]
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
batch = self.processor(
|
121 |
+
input_values,
|
122 |
+
sampling_rate=self.sampling_rate,
|
123 |
+
return_tensors="pt",
|
124 |
padding=self.padding,
|
125 |
max_length=self.max_length,
|
126 |
pad_to_multiple_of=self.pad_to_multiple_of,
|
127 |
+
return_attention_mask=self.return_attention_mask
|
128 |
)
|
129 |
|
130 |
+
return {
|
131 |
+
"input_values": batch.input_values,
|
132 |
+
"attention_mask": batch.attention_mask if self.return_attention_mask else None
|
133 |
+
}
|
134 |
|
135 |
|
136 |
def predict(test_dataloader, model, device: torch.device):
|
|
|
179 |
batch_size=16,
|
180 |
collate_fn=data_collator,
|
181 |
shuffle=False,
|
182 |
+
num_workers=2
|
183 |
)
|
184 |
|
185 |
preds = predict(test_dataloader=test_dataloader, model=model, device=device)
|
186 |
|
187 |
return preds
|
188 |
|
|
|
189 |
model_name_or_path = "alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech"
|
190 |
+
|
191 |
audio_paths = [] # Must be a list with absolute paths of the audios that will be used in inference
|
192 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
193 |
|