ppo-LunarLander-v2 / config.json
albisumikel's picture
Upload PPO LunarLander-v2 trained agent
225292a verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ee032d61510>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ee032d615a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ee032d61630>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ee032d616c0>", "_build": "<function ActorCriticPolicy._build at 0x7ee032d61750>", "forward": "<function ActorCriticPolicy.forward at 0x7ee032d617e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ee032d61870>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ee032d61900>", "_predict": "<function ActorCriticPolicy._predict at 0x7ee032d61990>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ee032d61a20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ee032d61ab0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ee032d61b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ee032f02280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716418441257661117, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPpnqz6BBiY+ITgEvr2jfb5SlS89NnXFuwAAAAAAAAAAAzJSvpKepj9Wx/G+QD0Hv3ktYr5KVAw9AAAAAAAAAACzU1o+lO74vCJI8zppKYi5DkVevikiJroAAIA/AACAP/Yhpr5J9mE+Deg7PkWlUb7oaI68orw0PQAAAAAAAAAAYB13PhT4hLoqw1c7twHKOzODTjuiWcQ8AACAPwAAgD9NtVG99lxDutBtvDnQQoy2t0ZlO2MwgbUAAAAAAACAP51luj7NAV+94tB7u59fUTm9JUu+8mfrugAAgD8AAIA/G0sEPwsukj1UcpA6BEI4vk3R/TwptCq9AAAAAAAAAACAa1q9XMsWujQjuj30nOkzXLPIuppDkTMAAAAAAAAAAM0Y1Ds/T4Q/mYIpvBN2Er/Elms8xDkfvQAAAAAAAAAA0OF4viNyBD/SWEu9Yu6BvhTYlr2evwi9AAAAAAAAAAAzBLq8SnS8PxYhn75Oqp4+HzQXu95wdb0AAAAAAAAAAC2gbD5NDzW9DnyWOkOAgrm96Jy+sDHUuQAAgD8AAIA/gFoEPeHIlLpju2Y8As0BNbYGyboAAOMzAACAPwAAgD+qBtg+tJDdPYa11b08OCm+Jg9zO1mxMTsAAAAAAAAAAJKqh756eZI/WGjcvnC+6L5SF1q+ud4ovQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGvgYlIEr5KMAWyUTeEBjAF0lEdAmNvCQYDT0HV9lChoBkdAbsAVwgkkbGgHTQoBaAhHQJjb47EHdGl1fZQoaAZHQHH8KdQO4G5oB00LAWgIR0CY3O6QNkOJdX2UKGgGR0BwwcCmuTzNaAdL32gIR0CY3fAeJYT1dX2UKGgGR0BvOzsdDIBBaAdNCQFoCEdAmN7L6+FlCnV9lChoBkdAQezELpiZv2gHS99oCEdAmN8jNQj2SXV9lChoBkdAa31DjzZpSWgHTSkBaAhHQJjgUFpwjt51fZQoaAZHQGDDTg/C66JoB03oA2gIR0CY4MywOe8PdX2UKGgGR0A8GcABDG96aAdLz2gIR0CY4fcbzbvgdX2UKGgGR0BvxKqn3ta7aAdL6GgIR0CY5XxPO6d2dX2UKGgGR0BbG2CZnctYaAdN6ANoCEdAmOX/ES/TLHV9lChoBkdAaQyG/N7jUGgHTXIBaAhHQJjmAWac7Qt1fZQoaAZHQHAsSSmqHXVoB00rAWgIR0CZTD7k4m1IdX2UKGgGR0BxbO67NB4VaAdNvQFoCEdAmUx1hXr+pHV9lChoBkdARgF12aDwpmgHS/ZoCEdAmU7NCRfWtnV9lChoBkdAboXC1qnFYWgHTSoBaAhHQJlR7/wRXfZ1fZQoaAZHQG93+fAbhm5oB00QAWgIR0CZUiwhnrY5dX2UKGgGR0BvwkfHPu5SaAdNGgFoCEdAmVNjz7MxGnV9lChoBkdAb7PMN+b3GmgHTRcBaAhHQJlU+bb1yvN1fZQoaAZHQEJ0X9BKL89oB0v2aAhHQJlWzfyf+S91fZQoaAZHQG+RW1D0DlpoB0v3aAhHQJlZwx7AtWd1fZQoaAZHQG1nX05EMLFoB0v/aAhHQJlZ6Cf6Gg11fZQoaAZHQHCe9/e+Eh9oB0vmaAhHQJlbTW4EwFl1fZQoaAZHQG6ag0bcXWRoB01eAWgIR0CZXJtvGZNPdX2UKGgGR0BwHAfIS13MaAdL8mgIR0CZXnOrhisodX2UKGgGR0BqPC9wm3OOaAdNBAFoCEdAmWAqf4AS4HV9lChoBkdAYkkoBJZntmgHTegDaAhHQJlgJ8uzyBl1fZQoaAZHQHAUXBtUGV1oB0vuaAhHQJlh4SbpeNV1fZQoaAZHQGyrPddmg8NoB00FA2gIR0CZYuVBD5TIdX2UKGgGR0BxHoD+zdDZaAdL2GgIR0CZZEW5paicdX2UKGgGR0Btwf4M4LkTaAdL/mgIR0CZZLaRZEDydX2UKGgGR0Bgua9f1HvuaAdN6ANoCEdAmWZJB9kSVXV9lChoBkdAb/zEsJ6Y3WgHTYABaAhHQJlmhnctXgd1fZQoaAZHQHHUoF3Y+StoB00WAWgIR0CZaArBCUosdX2UKGgGR0ByT9h/iHZcaAdNHgFoCEdAmWpuOKfnOnV9lChoBkdAcI5+yquKXWgHS+RoCEdAmWyAN5MURHV9lChoBkdAVNp7HAAQx2gHTegDaAhHQJluMXm/3391fZQoaAZHQG/1jvuw5eZoB0vyaAhHQJlvOMxXXAd1fZQoaAZHQFvZu89Oh01oB03oA2gIR0CZb4vPkaMrdX2UKGgGR0BcoJKJ2t+1aAdN6ANoCEdAmXCWSZBsynV9lChoBkdAbiU5y2hIv2gHS+hoCEdAmXCxfBvaUXV9lChoBkdAbCiojv/ipGgHS/xoCEdAmXE6Fh5PdnV9lChoBkdAcDD5UcXFcmgHS+toCEdAmXRn3L3bmHV9lChoBkdANj90FKTSs2gHS5toCEdAmXVydOIqLHV9lChoBkdAcBWfHggow2gHTUoBaAhHQJl2J5zHS4R1fZQoaAZHQHC6AOz6ab5oB00LAmgIR0CZdi/mT1TSdX2UKGgGR0BtlLOkcjqwaAdNDAFoCEdAmXeke2d/a3V9lChoBkdAYoYavRqoImgHTegDaAhHQJl31h3JPqN1fZQoaAZHQG93NxuKoAJoB0vVaAhHQJl4DgNwzch1fZQoaAZHQG55DAi3XqZoB0vsaAhHQJl5436yjYZ1fZQoaAZHQG/Wf9YOlO5oB0vqaAhHQJl56HnEETx1fZQoaAZHQG2zKm8/UvxoB0v9aAhHQJl7Lfl6qsF1fZQoaAZHQG438dPtUn5oB01eAWgIR0CZfDrpaA4GdX2UKGgGR0BiC0UZeiSJaAdN6ANoCEdAmX2ofKZDzHV9lChoBkdAb5x64UeuFGgHTREBaAhHQJl/UWi1y/91fZQoaAZHQHB8BJ7LMcJoB0vTaAhHQJl//3qRlpZ1fZQoaAZHQHAyF0PpY9xoB0v6aAhHQJmAGzposZp1fZQoaAZHQG8w/FBIFvBoB00DAWgIR0CZgHRhttQ9dX2UKGgGR0BxWV18stkGaAdNFwFoCEdAmYCNyksSTXV9lChoBkdAcQiBAv+OwWgHS/1oCEdAmYIGNJe3QXV9lChoBkdAcHy9hZyMk2gHTRIBaAhHQJmCmYOUdJd1fZQoaAZHQF85EpRXOnloB03oA2gIR0CZg1LhJiAldX2UKGgGR0BuQOOIZZSvaAdL+mgIR0CZhDpg1FYudX2UKGgGR0Bszy2+fywwaAdL+2gIR0CZhFBDohZAdX2UKGgGR0BJmKHwgDA8aAdLtGgIR0CZhXDR+jM3dX2UKGgGR0Bswd41P3zuaAdNCAFoCEdAmYaPEOy3TnV9lChoBkdAcOC13+uNgmgHTSQBaAhHQJmJQgKWszV1fZQoaAZHQF87IwdsBQxoB03oA2gIR0CZivNRm9QGdX2UKGgGR0BsRylWOp84aAdL7mgIR0CZi/FSsKb8dX2UKGgGR0BtA6XY150KaAdL+mgIR0CZjCYbsF+vdX2UKGgGR0Bg9OtCAtnPaAdN6ANoCEdAmYz1Muez2XV9lChoBkdAcJF8GcFyJmgHTSoBaAhHQJmNhvkzXSV1fZQoaAZHQG9MZlWfbsZoB00EAWgIR0CZjx0bcXWOdX2UKGgGR0BhGKR8twrEaAdN6ANoCEdAmY+zWK/EfnV9lChoBkdAbB8L/CIk7mgHS/toCEdAmY/YomXw9nV9lChoBkdAcKr4ecQRPGgHTRABaAhHQJmQEKYzBRB1fZQoaAZHQG9K2PtD2J1oB0vkaAhHQJmQW4d6syV1fZQoaAZHQHBiYTGo73hoB010AWgIR0CZkP9SMtK7dX2UKGgGR0BxDlq59Vm0aAdNKAFoCEdAmZGxas6q83V9lChoBkdAcKBRXOnl4mgHTQgBaAhHQJmSKCAc1fp1fZQoaAZHQHDJIVARkEtoB0vkaAhHQJmT2RYA80V1fZQoaAZHQG7s3VLBbfRoB01qAWgIR0CZk+z1bqyGdX2UKGgGR0Bw3we7tiQUaAdNDQFoCEdAmZQrXcxj8XV9lChoBkdAb7fPszEaVGgHS/FoCEdAmZT/io86m3V9lChoBkdAbNCXpnpSrGgHS/JoCEdAmZYHSro4dnV9lChoBkdAQzH1g6U7jmgHS85oCEdAmZaLM5fdAXV9lChoBkdAbojENOM2nGgHS+poCEdAmZfm4mTkhnV9lChoBkdAbiobWEsasWgHS/RoCEdAmZjDBMzuW3V9lChoBkdAcCTFYuCf6GgHTSQBaAhHQJmZKW5Yoy91fZQoaAZHQG4wxD1GsmxoB00JAWgIR0CZmm5+YtxudX2UKGgGR0BtrgCGN70GaAdL/mgIR0CZmvLHdXT3dX2UKGgGR0Bur+y5Zr57aAdNBAFoCEdAmZvkq2Bre3V9lChoBkdAbA39NN8E3mgHS+FoCEdAmZzc7yQPqnV9lChoBkdAcLPqWTot+WgHS/poCEdAmZ2NaUzKtHV9lChoBkdAUVKdZq20A2gHS8doCEdAmZ4JydWhiHV9lChoBkdAb3aw0waisWgHS/hoCEdAmZ7SlSCOFXV9lChoBkdAbgZndO6/ZmgHTQgBaAhHQJmhnDhtLth1fZQoaAZHQGdkQz+FUQ1oB00fAmgIR0CZoglQdjoZdX2UKGgGR0BwUvr+o99uaAdL12gIR0CZolYD1XeWdX2UKGgGR0BwWhP+GXXzaAdL+2gIR0CZo1cs189fdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}