|
--- |
|
license: mit |
|
tags: |
|
- image-to-image |
|
datasets: |
|
- yulu2/InstructCV-Demo-Data |
|
--- |
|
|
|
# InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists |
|
|
|
GitHub: https://github.com/AlaaLab/InstructCV |
|
|
|
[![pCVB5B8.png](https://s1.ax1x.com/2023/06/11/pCVB5B8.png)](https://imgse.com/i/pCVB5B8) |
|
|
|
|
|
## Example |
|
|
|
To use `InstructCV`, install `diffusers` using `main` for now. The pipeline will be available in the next release |
|
|
|
```bash |
|
pip install diffusers accelerate safetensors transformers |
|
``` |
|
|
|
```python |
|
import PIL |
|
import requests |
|
import torch |
|
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler |
|
|
|
model_id = "yulu2/InstructCV" |
|
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None, variant="ema") |
|
pipe.to("cuda") |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
url = "put your url here" |
|
|
|
def download_image(url): |
|
image = PIL.Image.open(requests.get(url, stream=True).raw) |
|
image = PIL.ImageOps.exif_transpose(image) |
|
image = image.convert("RGB") |
|
return image |
|
|
|
image = download_image(URL) |
|
seed = random.randint(0, 100000) |
|
generator = torch.manual_seed(seed) |
|
width, height = image.size |
|
factor = 512 / max(width, height) |
|
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height) |
|
width = int((width * factor) // 64) * 64 |
|
height = int((height * factor) // 64) * 64 |
|
image = ImageOps.fit(image, (width, height), method=Image.Resampling.LANCZOS) |
|
|
|
prompt = "Detect the person." |
|
images = pipe(prompt, image=image, num_inference_steps=100, generator=generator).images[0] |
|
images[0] |
|
``` |