akridge commited on
Commit
a75ac6a
·
verified ·
1 Parent(s): 40f3558

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ base_model:
5
+ - Ultralytics/YOLO11
6
+ tags:
7
+ - yolo
8
+ - yolo11
9
+ - yolo11x
10
+ - urchin
11
+ - sea
12
+ - marine-detection
13
+ pipeline_tag: object-detection
14
+ ---
15
+ # Yolo11x Sea Urchin Detector
16
+
17
+ ## Model Details / Overview
18
+ This model was trained to detect sea urchins using the YOLO11 architecture. Trained on open datasets to identify and locate urchins in various underwater conditions.
19
+
20
+ - **Model Architecture**: YOLO11x
21
+ - **Task**: Object Detection (Urchin Detection)
22
+ - **Footage Type**: Underwater Footage
23
+ - **Classes**: 1 (urchin)
24
+
25
+ ## Evaluation of YOLOv11m & YOLOv11x Performance
26
+ ![results](./results_h.png)
27
+ - link to nano sized model: https://huggingface.co/akridge/yolo11n-sea-urchin-detector
28
+ - link to medium sized model: https://huggingface.co/akridge/yolo11m-sea-urchin-detector
29
+
30
+ ## Model Weights
31
+ The model's weights can be found [here](./yolo11x_urchin_trained.pt) | Also available in various formats:
32
+
33
+ - **[PyTorch (best.pt)](./train/weights/best.pt)**: Standard format for PyTorch-based applications.
34
+ - **[Latest PyTorch Checkpoint (last.pt)](./train/weights/last.pt)**: The latest checkpoint from training.
35
+ - **[ONNX (best.onnx)](./train/weights/best.onnx)**: ForONNX runtime.
36
+ - **[TorchScript (best.torchscript)](./train/weights/best.torchscript)**
37
+ - **[NCNN](./train/weights/best_ncnn_model/model.ncnn.bin)**: Efficient for mobile platforms and embedded systems.
38
+
39
+ # Intended Use
40
+ - Real-time detections on underwater footage
41
+ - Post-processed video/imagery for detecting sea urchins in underwater environments
42
+
43
+ # Factors
44
+ ### Model Performance
45
+ - Multi-source Dataset: Trained on datasets that include urchin images from various angles.
46
+ - Model Architecture (YOLO11x): Lightweight and optimized for real-time urchin detection in underwater footage.
47
+ - Training Data: The dataset is split into 70% training, 20% validation, and 10% test data.
48
+ - Training Parameters: Configured with 100 epochs, a 0.001 learning rate, and 640x640 image size for convergence.
49
+
50
+ ## Datasets
51
+ The training data was collected, parsed and organized from open sources:
52
+ 1. **[Orange-OpenSource Marine-Detect](https://github.com/Orange-OpenSource/marine-detect)**
53
+ 2. **[Roboflow - Sakana Urchins CJLib](https://universe.roboflow.com/sakana/urchins-cjlib)**
54
+ 3. **[Roboflow - Diad 3 Computer Vision Project](https://universe.roboflow.com/diad1/diad-3/dataset/6)**
55
+ - **Roboflow Details**:
56
+ - **License**: CC BY 4.0
57
+
58
+ ### Dataset Composition:
59
+ - **Images**: 5000
60
+ - **Train/Val/Test Split Ratio**: 7:2:1
61
+
62
+ ## Metrics
63
+ Below are the key metrics from the model evaluation on the validation set:
64
+
65
+ ## Training Validation Results
66
+ ### Training and Validation Losses
67
+ ![Training and Validation Losses](./train/results.png)
68
+
69
+ ### Confusion Matrix
70
+ ![Confusion Matrix](./train/confusion_matrix.png)
71
+
72
+ ### Precision-Recall Curve
73
+ ![Precision-Recall Curve](./train/PR_curve.png)
74
+
75
+ ### F1 Score Curve
76
+ ![F1 Score Curve](./train/F1_curve.png)
77
+
78
+ ## Training Configuration
79
+ - Nvidia 4070 Geoforce RTX Super
80
+ - **Model Weights File**: `yolo11x_urchin_trained.pt`
81
+ - **Number of Epochs**: 100
82
+ - **Learning Rate**: 0.001
83
+ - **Batch Size**: 16
84
+ - **Image Size**: 640x640
85
+
86
+ ## Deployment
87
+ ### How to Use the Model
88
+
89
+ To use the trained model, follow these steps:
90
+
91
+ 1. **Load the Model**:
92
+ ```python
93
+ from ultralytics import YOLO
94
+
95
+ # Load the model
96
+ model = YOLO("yolo11x_urchin_trained.pt")
97
+
98
+ ## Limitations
99
+ The model was trained on a mix of open source images. It may not generalize well to other environments or non-marine scenarios. Additionally, environmental variations, occlusions, or poor lighting may affect performance.
100
+
101
+ ## Additional Notes:
102
+ Dataset Sources:
103
+ - Two datasets were combined to improve model robustness, allowing the model to adapt to varying lighting and water conditions.
104
+ Ethical Considerations:
105
+ - The detection results should be validated before using them for critical applications. The model’s performance in new environments might vary, and it may have biases if certain types of sea urchins were underrepresented in the training datasets.