update readme
Browse files
README.md
CHANGED
@@ -3,14 +3,21 @@ license: cc-by-sa-4.0
|
|
3 |
language: ja
|
4 |
pipeline_tag: zero-shot-classification
|
5 |
tags:
|
6 |
-
-
|
|
|
|
|
|
|
7 |
datasets:
|
8 |
- shunk031/jsnli
|
9 |
library_name: sentence-transformers
|
10 |
---
|
11 |
|
12 |
|
13 |
-
# Cross-Encoder for Natural Language Inference
|
|
|
|
|
|
|
|
|
14 |
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
|
15 |
This model is based on [tohoku-nlp/bert-base-japanese-v3](https://huggingface.co/tohoku-nlp/bert-base-japanese-v3).
|
16 |
|
@@ -61,4 +68,8 @@ sent = "Appleは先程、iPhoneの最新機種について発表しました。"
|
|
61 |
candidate_labels = ["技術", "スポーツ", "政治"]
|
62 |
res = classifier(sent, candidate_labels)
|
63 |
print(res)
|
64 |
-
```
|
|
|
|
|
|
|
|
|
|
3 |
language: ja
|
4 |
pipeline_tag: zero-shot-classification
|
5 |
tags:
|
6 |
+
- cross-encoder
|
7 |
+
- tohoku-nlp/bert-base-japanese-v3
|
8 |
+
- nli
|
9 |
+
- natural-language-inference
|
10 |
datasets:
|
11 |
- shunk031/jsnli
|
12 |
library_name: sentence-transformers
|
13 |
---
|
14 |
|
15 |
|
16 |
+
# Cross-Encoder for Natural Language Inference(NLI) for Japanese
|
17 |
+
|
18 |
+
> [!NOTE]
|
19 |
+
> Considering the results of the JNLI evaluation result, we recommend using [akiFQC/bert-base-japanese-v3_nli-jsnli-jnli-jsick](https://huggingface.co/akiFQC/bert-base-japanese-v3_nli-jsnli-jnli-jsick) for natural language inference in Japanese.
|
20 |
+
|
21 |
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
|
22 |
This model is based on [tohoku-nlp/bert-base-japanese-v3](https://huggingface.co/tohoku-nlp/bert-base-japanese-v3).
|
23 |
|
|
|
68 |
candidate_labels = ["技術", "スポーツ", "政治"]
|
69 |
res = classifier(sent, candidate_labels)
|
70 |
print(res)
|
71 |
+
```
|
72 |
+
|
73 |
+
## Benchmarks
|
74 |
+
|
75 |
+
JGLUE-JNLI validation set accuracy: 0.770
|