|
--- |
|
license: cc-by-sa-4.0 |
|
datasets: |
|
- unicamp-dl/mmarco |
|
- bclavie/mmarco-japanese-hard-negatives |
|
language: |
|
- ja |
|
--- |
|
|
|
|
|
|
|
## Evaluation on [MIRACL japanese](https://huggingface.co/datasets/miracl/miracl) |
|
These models don't train on the MIRACL training data. |
|
|
|
| Model | nDCG@10 | Recall@1000 | Recall@5 | Recall@30 | |
|
|------------------|---------|-------------|----------|-----------| |
|
| BM25 | 0.369 | 0.931 | - | - | |
|
| splade-japanese | 0.405 | 0.931 | 0.406 | 0.663 | |
|
| splade-japanese-efficient| 0.408 | 0.954 | 0.419 | 0.718 | |
|
| splade-japanese-v2 | 0.580 | 0.967 | 0.629 | 0.844 | |
|
| splade-japanese-v2-doc | 0.478 | 0.930 | 0.514 | 0.759 | |
|
| splade-japanese-v3 | **0.604** | **0.979** | **0.647** | **0.877** | |
|
|
|
|
|
*'splade-japanese-v2-doc' model does not require query encoder during inference. |
|
|
|
|
|
## Evaluation on [hotchpotch/JQaRA](https://huggingface.co/datasets/hotchpotch/JQaRA) |
|
|
|
| | | | JQaRa | | | |
|
| ------------------- | --- | --------- | --------- | --------- | --------- | |
|
| | | NDCG@10 | MRR@10 | NDCG@100 | MRR@100 | |
|
| splade-japanese-v3 | | 0.505 | 0.772 | 0.7 | 0.775 | |
|
| JaColBERTv2 | | 0.585 | 0.836 | 0.753 | 0.838 | |
|
| JaColBERT | | 0.549 | 0.811 | 0.730 | 0.814 | |
|
| bge-m3+all | | 0.576 | 0.818 | 0.745 | 0.820 | |
|
| bg3-m3+dense | | 0.539 | 0.785 | 0.721 | 0.788 | |
|
| m-e5-large | | 0.554 | 0.799 | 0.731 | 0.801 | |
|
| m-e5-base | | 0.471 | 0.727 | 0.673 | 0.731 | |
|
| m-e5-small | | 0.492 | 0.729 | 0.689 | 0.733 | |
|
| GLuCoSE | | 0.308 | 0.518 | 0.564 | 0.527 | |
|
| sup-simcse-ja-base | | 0.324 | 0.541 | 0.572 | 0.550 | |
|
| sup-simcse-ja-large | | 0.356 | 0.575 | 0.596 | 0.583 | |
|
| fio-base-v0.1 | | 0.372 | 0.616 | 0.608 | 0.622 | |
|
|
|
|
|
下のコードを実行すれば,単語拡張や重み付けの確認ができます. |
|
|
|
If you'd like to try it out, you can see the expansion of queries or documents by running the code below. |
|
|
|
you need to install |
|
|
|
``` |
|
!pip install fugashi ipadic unidic-lite |
|
``` |
|
|
|
```python |
|
from transformers import AutoModelForMaskedLM,AutoTokenizer |
|
import torch |
|
import numpy as np |
|
|
|
model = AutoModelForMaskedLM.from_pretrained("aken12/splade-japanese-v3") |
|
tokenizer = AutoTokenizer.from_pretrained("aken12/splade-japanese-v3") |
|
vocab_dict = {v: k for k, v in tokenizer.get_vocab().items()} |
|
|
|
def encode_query(query): ##query passsage maxlen: 32,180 |
|
query = tokenizer(query, return_tensors="pt") |
|
output = model(**query, return_dict=True).logits |
|
output, _ = torch.max(torch.log(1 + torch.relu(output)) * query['attention_mask'].unsqueeze(-1), dim=1) |
|
return output |
|
|
|
with torch.no_grad(): |
|
model_output = encode_query(query="筑波大学では何の研究が行われているか?") |
|
|
|
reps = model_output |
|
idx = torch.nonzero(reps[0], as_tuple=False) |
|
|
|
dict_splade = {} |
|
for i in idx: |
|
token_value = reps[0][i[0]].item() |
|
if token_value > 0: |
|
token = vocab_dict[int(i[0])] |
|
dict_splade[token] = float(token_value) |
|
|
|
sorted_dict_splade = sorted(dict_splade.items(), key=lambda item: item[1], reverse=True) |
|
for token, value in sorted_dict_splade: |
|
print(token, value) |
|
``` |