metadata
tags:
- generated_from_trainer
datasets:
- akahana/GlotCC-V1-jav-Latn
metrics:
- accuracy
model-index:
- name: mini-roberta-javanese
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: akahana/GlotCC-V1-jav-Latn default
type: akahana/GlotCC-V1-jav-Latn
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.15905819453012543
mini-roberta-javanese
This model is a fine-tuned version of on the akahana/GlotCC-V1-jav-Latn default dataset. It achieves the following results on the evaluation set:
- Loss: 6.0607
- Accuracy: 0.1591
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1