ajtamayoh's picture
update model card README.md
b540561
|
raw
history blame
2.11 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: NER_EHR_Spanish_model_Mulitlingual_BERT
    results: []

NER_EHR_Spanish_model_Mulitlingual_BERT

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2603
  • Precision: 0.5637
  • Recall: 0.5801
  • F1: 0.5718
  • Accuracy: 0.9534

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 71 0.2060 0.5017 0.5540 0.5266 0.9496
No log 2.0 142 0.2163 0.5363 0.5433 0.5398 0.9495
No log 3.0 213 0.2245 0.5521 0.5356 0.5438 0.9514
No log 4.0 284 0.2453 0.5668 0.5985 0.5822 0.9522
No log 5.0 355 0.2433 0.5657 0.5579 0.5617 0.9530
No log 6.0 426 0.2553 0.5762 0.5762 0.5762 0.9536
No log 7.0 497 0.2603 0.5637 0.5801 0.5718 0.9534

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.0
  • Tokenizers 0.12.1