HarmCare_binary / README.md
ajrayman's picture
End of training
a222868 verified
metadata
library_name: transformers
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: HarmCare_binary
    results: []

HarmCare_binary

This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6675
  • Accuracy: 0.6433
  • Precision: 0.6315
  • Recall: 0.7438
  • F1: 0.6831
  • Auc: 0.6398

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auc
No log 1.0 127 0.6639 0.6087 0.6074 0.6864 0.6445 0.6060
No log 2.0 254 0.6713 0.5988 0.5723 0.8853 0.6952 0.5889
No log 3.0 381 0.6675 0.6433 0.6315 0.7438 0.6831 0.6398

Framework versions

  • Transformers 4.44.1
  • Pytorch 1.11.0
  • Datasets 2.12.0
  • Tokenizers 0.19.1