metadata
library_name: transformers
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Anxiety_binary
results: []
Anxiety_binary
This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5851
- Accuracy: 0.6847
- Precision: 0.6898
- Recall: 0.6450
- F1: 0.6667
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 134 | 0.6335 | 0.6660 | 0.7139 | 0.5286 | 0.6075 |
No log | 2.0 | 268 | 0.6254 | 0.6735 | 0.6330 | 0.7901 | 0.7029 |
No log | 3.0 | 402 | 0.5851 | 0.6847 | 0.6898 | 0.6450 | 0.6667 |
Framework versions
- Transformers 4.44.1
- Pytorch 1.11.0
- Datasets 2.12.0
- Tokenizers 0.19.1