Anxiety_binary / README.md
ajrayman's picture
End of training
7843154 verified
|
raw
history blame
1.76 kB
metadata
library_name: transformers
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: Anxiety_binary
    results: []

Anxiety_binary

This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5851
  • Accuracy: 0.6847
  • Precision: 0.6898
  • Recall: 0.6450
  • F1: 0.6667
  • Auc: 0.6838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auc
No log 1.0 134 0.6335 0.6660 0.7139 0.5286 0.6075 0.6630
No log 2.0 268 0.6254 0.6735 0.6330 0.7901 0.7029 0.6761
No log 3.0 402 0.5851 0.6847 0.6898 0.6450 0.6667 0.6838

Framework versions

  • Transformers 4.44.1
  • Pytorch 1.11.0
  • Datasets 2.12.0
  • Tokenizers 0.19.1