|
import re |
|
|
|
import numpy as np |
|
from transformers import Pipeline, PreTrainedTokenizer |
|
|
|
|
|
INSTRUCTION_KEY = "### Instruction:" |
|
RESPONSE_KEY = "### Response:" |
|
END_KEY = "### End" |
|
INTRO_BLURB = ( |
|
"Below is an instruction that describes a task, along with any additional context. Write a response that appropriately completes the request." |
|
) |
|
|
|
|
|
|
|
PROMPT_FOR_GENERATION_FORMAT = """{intro} |
|
|
|
{instruction_key} |
|
{instruction} |
|
|
|
{response_key} |
|
""".format( |
|
intro=INTRO_BLURB, |
|
instruction_key=INSTRUCTION_KEY, |
|
instruction="{instruction}", |
|
response_key=RESPONSE_KEY, |
|
) |
|
|
|
|
|
def get_special_token_id(tokenizer: PreTrainedTokenizer, key: str) -> int: |
|
"""Gets the token ID for a given string that has been added to the tokenizer as a special token. |
|
|
|
When training, we configure the tokenizer so that the sequences like "### Instruction:" and "### End" are |
|
treated specially and converted to a single, new token. This retrieves the token ID each of these keys map to. |
|
|
|
Args: |
|
tokenizer (PreTrainedTokenizer): the tokenizer |
|
key (str): the key to convert to a single token |
|
|
|
Raises: |
|
RuntimeError: if more than one ID was generated |
|
|
|
Returns: |
|
int: the token ID for the given key |
|
""" |
|
token_ids = tokenizer.encode(key) |
|
if len(token_ids) > 1: |
|
raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}") |
|
return token_ids[0] |
|
|
|
|
|
class InstructionTextGenerationPipeline(Pipeline): |
|
def __init__( |
|
self, *args, do_sample: bool = True, max_new_tokens: int = 256, top_p: float = 0.92, top_k: int = 0, **kwargs |
|
): |
|
super().__init__(*args, do_sample=do_sample, max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k, **kwargs) |
|
|
|
def _sanitize_parameters(self, return_instruction_text=False, **generate_kwargs): |
|
preprocess_params = {} |
|
|
|
|
|
|
|
tokenizer_response_key = next( |
|
(token for token in self.tokenizer.additional_special_tokens if token.startswith(RESPONSE_KEY)), None |
|
) |
|
|
|
response_key_token_id = None |
|
end_key_token_id = None |
|
if tokenizer_response_key: |
|
try: |
|
response_key_token_id = get_special_token_id(self.tokenizer, tokenizer_response_key) |
|
end_key_token_id = get_special_token_id(self.tokenizer, END_KEY) |
|
|
|
|
|
generate_kwargs["eos_token_id"] = end_key_token_id |
|
except ValueError: |
|
pass |
|
|
|
forward_params = generate_kwargs |
|
postprocess_params = { |
|
"response_key_token_id": response_key_token_id, |
|
"end_key_token_id": end_key_token_id, |
|
"return_instruction_text": return_instruction_text, |
|
} |
|
|
|
return preprocess_params, forward_params, postprocess_params |
|
|
|
def preprocess(self, instruction_text, **generate_kwargs): |
|
prompt_text = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction_text) |
|
inputs = self.tokenizer( |
|
prompt_text, |
|
return_tensors="pt", |
|
) |
|
inputs["prompt_text"] = prompt_text |
|
inputs["instruction_text"] = instruction_text |
|
return inputs |
|
|
|
def _forward(self, model_inputs, **generate_kwargs): |
|
input_ids = model_inputs["input_ids"] |
|
attention_mask = model_inputs.get("attention_mask", None) |
|
generated_sequence = self.model.generate( |
|
input_ids=input_ids.to(self.model.device), |
|
attention_mask=attention_mask, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
**generate_kwargs, |
|
)[0].cpu() |
|
instruction_text = model_inputs.pop("instruction_text") |
|
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "instruction_text": instruction_text} |
|
|
|
def postprocess(self, model_outputs, response_key_token_id, end_key_token_id, return_instruction_text): |
|
sequence = model_outputs["generated_sequence"] |
|
instruction_text = model_outputs["instruction_text"] |
|
|
|
|
|
decoded = None |
|
|
|
|
|
if response_key_token_id and end_key_token_id: |
|
|
|
|
|
response_pos = None |
|
response_positions = np.where(sequence == response_key_token_id)[0] |
|
if len(response_positions) == 0: |
|
pass |
|
else: |
|
response_pos = response_positions[0] |
|
|
|
if response_pos: |
|
|
|
|
|
|
|
|
|
end_pos = None |
|
end_positions = np.where(sequence == end_key_token_id)[0] |
|
if len(end_positions) > 0: |
|
end_pos = end_positions[0] |
|
|
|
decoded = self.tokenizer.decode(sequence[response_pos + 1 : end_pos]).strip() |
|
else: |
|
|
|
|
|
fully_decoded = self.tokenizer.decode(sequence) |
|
|
|
|
|
|
|
m = re.search(r"#+\s*Response:\s*(.+?)#+\s*End", fully_decoded, flags=re.DOTALL) |
|
|
|
if m: |
|
decoded = m.group(1).strip() |
|
else: |
|
|
|
|
|
m = re.search(r"#+\s*Response:\s*(.+)", fully_decoded, flags=re.DOTALL) |
|
if m: |
|
decoded = m.group(1).strip() |
|
|
|
if return_instruction_text: |
|
return {"instruction_text": instruction_text, "generated_text": decoded} |
|
|
|
return decoded |
|
|