jacobrenn commited on
Commit
0c7db8e
1 Parent(s): fd4283e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -159
README.md CHANGED
@@ -10,8 +10,12 @@ library_name: transformers
10
 
11
  <!-- Provide a quick summary of what the model is/does. -->
12
 
13
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
 
 
14
 
 
 
15
  ## Model Details
16
 
17
  ### Model Description
@@ -20,20 +24,12 @@ This modelcard aims to be a base template for new models. It has been generated
20
 
21
 
22
 
23
- - **Developed by:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
 
38
  ## Uses
39
 
@@ -45,10 +41,6 @@ This modelcard aims to be a base template for new models. It has been generated
45
 
46
  [More Information Needed]
47
 
48
- ### Downstream Use [optional]
49
-
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
-
52
  [More Information Needed]
53
 
54
  ### Out-of-Scope Use
@@ -61,143 +53,81 @@ This modelcard aims to be a base template for new models. It has been generated
61
 
62
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
 
64
- [More Information Needed]
65
-
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
-
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
-
80
- ### Training Data
81
-
82
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
-
103
- [More Information Needed]
104
-
105
- ## Evaluation
106
-
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Data Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Authors [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Contact
200
-
201
- [More Information Needed]
202
-
203
-
 
10
 
11
  <!-- Provide a quick summary of what the model is/does. -->
12
 
13
+ AI Squared's `dlite-v1-124m` ([blog post](https://medium.com/ai-squared/introducing-dlite-a-lightweight-chatgpt-like-model-based-on-dolly-deaa49402a1f)) is a large language
14
+ model which is derived from OpenAI's smallest [GPT-2](https://huggingface.co/gpt2) model and fine-tuned on a single T4 GPU on a corpos of 50k records
15
+ ([Stanford Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html)) to help it exhibit chat-based capabilities.
16
 
17
+ While `dlite-v1-124m` is **not a state-of-the-art model**, we believe that the level of interactivity that can be achieved on such a small model that is trained so cheaply
18
+ is important to showcase, as it continues to demonstrate that creating powerful AI capabilities is much more accessible than previously thought.
19
  ## Model Details
20
 
21
  ### Model Description
 
24
 
25
 
26
 
27
+ - **Developed by:** AI Squared, Inc.
28
+ - **Shared by [optional]:** AI Squared, Inc.
29
+ - **Model type:** Large Language Model
30
+ - **Language(s) (NLP):** EN
31
+ - **License:** Apache v2.0
32
+ - **Finetuned from model [optional]:** GPT-2
 
 
 
 
 
 
 
 
33
 
34
  ## Uses
35
 
 
41
 
42
  [More Information Needed]
43
 
 
 
 
 
44
  [More Information Needed]
45
 
46
  ### Out-of-Scope Use
 
53
 
54
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
55
 
56
+ **`dlite-v1-124m` is not a state-of-the-art language model.** `dlite-v1-124m` is an experimental technology and is not designed for use in any
57
+ environment other than for research purposes. Furthermore, the model can sometimes exhibit undesired behaviors. Some of these behaviors include,
58
+ but are not limited to: factual inaccuracies, biases, offensive responses, toxicity, and hallucinations.
59
+ Just as with any other LLM, we advise users of this technology to exercise good judgment when applying this technology.
60
+
61
+
62
+ ## Usage
63
+
64
+ ### Load Model and Tokenizer from this Repository Using the `transformers` Package
65
+
66
+ ```python
67
+ from transfomrers import AutoModelForCausalLM, AutoTokenizer
68
+ model_id = 'aisquared/dlite-v1-124m'
69
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
70
+ model = AutoModelForCausalLM.from_pretrained(model_id)
71
+ ```
72
+
73
+ ### Create the Prompt Format and Other Variables
74
+
75
+ ```python
76
+ PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
77
+
78
+ ### Instruction:
79
+ {instruction}
80
+
81
+ ### Response:
82
+ """
83
+
84
+ END_KEY = '### End'
85
+ RESPONSE_KEY = '### Response:\n'
86
+ ```
87
+
88
+ ### Create a Function to Retrieve a Response
89
+
90
+ ```python
91
+ def create_response(
92
+ instruction,
93
+ model,
94
+ tokenizer,
95
+ do_sample = True,
96
+ max_new_tokens = 256,
97
+ top_p = 0.92,
98
+ top_k = 0,
99
+ **kwargs
100
+ ):
101
+ """
102
+ Create a response from the model by using a formatted prompt
103
+ """
104
+ ids = tokenizer(PROMPT_FORMAT.format(instruction = instruction), return_tensors = 'pt').input_ids
105
+
106
+ response_id = tokenizer.encode(RESPONSE_KEY)[0]
107
+ end_id = tokenizer.encode(END_KEY)[0]
108
+
109
+ tokens = model.generate(
110
+ ids,
111
+ pad_token_id = tokenizer.pad_token_id,
112
+ eos_token_id = end_id,
113
+ do_sample = do_sample,
114
+ max_new_tokens = max_new_tokens,
115
+ top_p = top_p,
116
+ top_k = top_k,
117
+ **kwargs
118
+ )[0].cpu()
119
+
120
+ res_pos = np.where(tokens == response_id)[0]
121
+
122
+ if len(res_pos) == 0:
123
+ return None
124
+
125
+ res_pos = res_pos[0]
126
+ end_pos = np.where(tokens == end_id)[0]
127
+ if len(end_pos) > 0:
128
+ end_pos = end_pos[0]
129
+ else:
130
+ end_pos = None
131
+
132
+ return tokenizer.decode(tokens[res_pos + 1 : end_pos]).strip()
133
+ ```