Update README.md
Browse files
README.md
CHANGED
@@ -10,8 +10,12 @@ library_name: transformers
|
|
10 |
|
11 |
<!-- Provide a quick summary of what the model is/does. -->
|
12 |
|
13 |
-
|
|
|
|
|
14 |
|
|
|
|
|
15 |
## Model Details
|
16 |
|
17 |
### Model Description
|
@@ -20,20 +24,12 @@ This modelcard aims to be a base template for new models. It has been generated
|
|
20 |
|
21 |
|
22 |
|
23 |
-
- **Developed by:**
|
24 |
-
- **Shared by [optional]:**
|
25 |
-
- **Model type:**
|
26 |
-
- **Language(s) (NLP):**
|
27 |
-
- **License:**
|
28 |
-
- **Finetuned from model [optional]:**
|
29 |
-
|
30 |
-
### Model Sources [optional]
|
31 |
-
|
32 |
-
<!-- Provide the basic links for the model. -->
|
33 |
-
|
34 |
-
- **Repository:** [More Information Needed]
|
35 |
-
- **Paper [optional]:** [More Information Needed]
|
36 |
-
- **Demo [optional]:** [More Information Needed]
|
37 |
|
38 |
## Uses
|
39 |
|
@@ -45,10 +41,6 @@ This modelcard aims to be a base template for new models. It has been generated
|
|
45 |
|
46 |
[More Information Needed]
|
47 |
|
48 |
-
### Downstream Use [optional]
|
49 |
-
|
50 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
51 |
-
|
52 |
[More Information Needed]
|
53 |
|
54 |
### Out-of-Scope Use
|
@@ -61,143 +53,81 @@ This modelcard aims to be a base template for new models. It has been generated
|
|
61 |
|
62 |
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
###
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
## Environmental Impact
|
144 |
-
|
145 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
146 |
-
|
147 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
148 |
-
|
149 |
-
- **Hardware Type:** [More Information Needed]
|
150 |
-
- **Hours used:** [More Information Needed]
|
151 |
-
- **Cloud Provider:** [More Information Needed]
|
152 |
-
- **Compute Region:** [More Information Needed]
|
153 |
-
- **Carbon Emitted:** [More Information Needed]
|
154 |
-
|
155 |
-
## Technical Specifications [optional]
|
156 |
-
|
157 |
-
### Model Architecture and Objective
|
158 |
-
|
159 |
-
[More Information Needed]
|
160 |
-
|
161 |
-
### Compute Infrastructure
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
#### Hardware
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
#### Software
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
## Citation [optional]
|
174 |
-
|
175 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
176 |
-
|
177 |
-
**BibTeX:**
|
178 |
-
|
179 |
-
[More Information Needed]
|
180 |
-
|
181 |
-
**APA:**
|
182 |
-
|
183 |
-
[More Information Needed]
|
184 |
-
|
185 |
-
## Glossary [optional]
|
186 |
-
|
187 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
## More Information [optional]
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
## Model Card Authors [optional]
|
196 |
-
|
197 |
-
[More Information Needed]
|
198 |
-
|
199 |
-
## Model Card Contact
|
200 |
-
|
201 |
-
[More Information Needed]
|
202 |
-
|
203 |
-
|
|
|
10 |
|
11 |
<!-- Provide a quick summary of what the model is/does. -->
|
12 |
|
13 |
+
AI Squared's `dlite-v1-124m` ([blog post](https://medium.com/ai-squared/introducing-dlite-a-lightweight-chatgpt-like-model-based-on-dolly-deaa49402a1f)) is a large language
|
14 |
+
model which is derived from OpenAI's smallest [GPT-2](https://huggingface.co/gpt2) model and fine-tuned on a single T4 GPU on a corpos of 50k records
|
15 |
+
([Stanford Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html)) to help it exhibit chat-based capabilities.
|
16 |
|
17 |
+
While `dlite-v1-124m` is **not a state-of-the-art model**, we believe that the level of interactivity that can be achieved on such a small model that is trained so cheaply
|
18 |
+
is important to showcase, as it continues to demonstrate that creating powerful AI capabilities is much more accessible than previously thought.
|
19 |
## Model Details
|
20 |
|
21 |
### Model Description
|
|
|
24 |
|
25 |
|
26 |
|
27 |
+
- **Developed by:** AI Squared, Inc.
|
28 |
+
- **Shared by [optional]:** AI Squared, Inc.
|
29 |
+
- **Model type:** Large Language Model
|
30 |
+
- **Language(s) (NLP):** EN
|
31 |
+
- **License:** Apache v2.0
|
32 |
+
- **Finetuned from model [optional]:** GPT-2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
## Uses
|
35 |
|
|
|
41 |
|
42 |
[More Information Needed]
|
43 |
|
|
|
|
|
|
|
|
|
44 |
[More Information Needed]
|
45 |
|
46 |
### Out-of-Scope Use
|
|
|
53 |
|
54 |
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
55 |
|
56 |
+
**`dlite-v1-124m` is not a state-of-the-art language model.** `dlite-v1-124m` is an experimental technology and is not designed for use in any
|
57 |
+
environment other than for research purposes. Furthermore, the model can sometimes exhibit undesired behaviors. Some of these behaviors include,
|
58 |
+
but are not limited to: factual inaccuracies, biases, offensive responses, toxicity, and hallucinations.
|
59 |
+
Just as with any other LLM, we advise users of this technology to exercise good judgment when applying this technology.
|
60 |
+
|
61 |
+
|
62 |
+
## Usage
|
63 |
+
|
64 |
+
### Load Model and Tokenizer from this Repository Using the `transformers` Package
|
65 |
+
|
66 |
+
```python
|
67 |
+
from transfomrers import AutoModelForCausalLM, AutoTokenizer
|
68 |
+
model_id = 'aisquared/dlite-v1-124m'
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
70 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
71 |
+
```
|
72 |
+
|
73 |
+
### Create the Prompt Format and Other Variables
|
74 |
+
|
75 |
+
```python
|
76 |
+
PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
77 |
+
|
78 |
+
### Instruction:
|
79 |
+
{instruction}
|
80 |
+
|
81 |
+
### Response:
|
82 |
+
"""
|
83 |
+
|
84 |
+
END_KEY = '### End'
|
85 |
+
RESPONSE_KEY = '### Response:\n'
|
86 |
+
```
|
87 |
+
|
88 |
+
### Create a Function to Retrieve a Response
|
89 |
+
|
90 |
+
```python
|
91 |
+
def create_response(
|
92 |
+
instruction,
|
93 |
+
model,
|
94 |
+
tokenizer,
|
95 |
+
do_sample = True,
|
96 |
+
max_new_tokens = 256,
|
97 |
+
top_p = 0.92,
|
98 |
+
top_k = 0,
|
99 |
+
**kwargs
|
100 |
+
):
|
101 |
+
"""
|
102 |
+
Create a response from the model by using a formatted prompt
|
103 |
+
"""
|
104 |
+
ids = tokenizer(PROMPT_FORMAT.format(instruction = instruction), return_tensors = 'pt').input_ids
|
105 |
+
|
106 |
+
response_id = tokenizer.encode(RESPONSE_KEY)[0]
|
107 |
+
end_id = tokenizer.encode(END_KEY)[0]
|
108 |
+
|
109 |
+
tokens = model.generate(
|
110 |
+
ids,
|
111 |
+
pad_token_id = tokenizer.pad_token_id,
|
112 |
+
eos_token_id = end_id,
|
113 |
+
do_sample = do_sample,
|
114 |
+
max_new_tokens = max_new_tokens,
|
115 |
+
top_p = top_p,
|
116 |
+
top_k = top_k,
|
117 |
+
**kwargs
|
118 |
+
)[0].cpu()
|
119 |
+
|
120 |
+
res_pos = np.where(tokens == response_id)[0]
|
121 |
+
|
122 |
+
if len(res_pos) == 0:
|
123 |
+
return None
|
124 |
+
|
125 |
+
res_pos = res_pos[0]
|
126 |
+
end_pos = np.where(tokens == end_id)[0]
|
127 |
+
if len(end_pos) > 0:
|
128 |
+
end_pos = end_pos[0]
|
129 |
+
else:
|
130 |
+
end_pos = None
|
131 |
+
|
132 |
+
return tokenizer.decode(tokens[res_pos + 1 : end_pos]).strip()
|
133 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|