|
|
|
|
|
|
|
|
|
|
|
|
|
"""Helper functions for padding and unpadding batches. |
|
|
|
These functions are used extensively throughout the Mosaic BERT implementation |
|
in `bert_layers.py`. |
|
""" |
|
|
|
from typing import Tuple, cast |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
|
|
|
|
class IndexFirstAxis(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, input: torch.Tensor, |
|
indices: torch.Tensor) -> torch.Tensor: |
|
"""Get just the values of `input` which are at `indices`. |
|
|
|
Arguments: |
|
ctx: the autograd context object |
|
input: (b, ...) 2+ dimensional tensor |
|
indices: (num_idx) 1D tensor |
|
""" |
|
ctx.save_for_backward(indices) |
|
assert input.ndim >= 2 |
|
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[ |
|
1:] |
|
second_dim = other_shape.numel( |
|
) |
|
|
|
return torch.gather( |
|
rearrange(input, 'b ... -> b (...)'), |
|
0, |
|
repeat(indices, 'z -> z d', |
|
d=second_dim) |
|
).reshape(-1, *other_shape) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None]: |
|
indices, = ctx.saved_tensors |
|
assert grad_output.ndim >= 2 |
|
other_shape = grad_output.shape[1:] |
|
grad_output = rearrange(grad_output, 'b ... -> b (...)') |
|
grad_input = torch.zeros([ctx.first_axis_dim, grad_output.shape[1]], |
|
device=grad_output.device, |
|
dtype=grad_output.dtype) |
|
|
|
|
|
grad_input.scatter_(0, |
|
repeat(indices, 'z -> z d', d=grad_output.shape[1]), |
|
grad_output) |
|
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None |
|
|
|
|
|
index_first_axis = IndexFirstAxis.apply |
|
|
|
|
|
class IndexPutFirstAxis(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, values: torch.Tensor, indices: torch.Tensor, |
|
first_axis_dim) -> torch.Tensor: |
|
ctx.save_for_backward(indices) |
|
assert indices.ndim == 1 |
|
assert values.ndim >= 2 |
|
output = torch.zeros(first_axis_dim, |
|
*values.shape[1:], |
|
device=values.device, |
|
dtype=values.dtype) |
|
output[indices] = values |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, |
|
grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]: |
|
indices, = ctx.saved_tensors |
|
grad_values = grad_output[indices] |
|
return grad_values, None, None |
|
|
|
|
|
index_put_first_axis = IndexPutFirstAxis.apply |
|
|
|
|
|
def unpad_input( |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]: |
|
"""Remove padding from input sequences. |
|
|
|
Arguments: |
|
hidden_states: (batch, seqlen, ...) |
|
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. |
|
|
|
Returns: |
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. |
|
indices: (total_nnz) |
|
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. |
|
max_seqlen_in_batch: int () |
|
""" |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = int(seqlens_in_batch.max().item()) |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), |
|
(1, 0)) |
|
|
|
|
|
|
|
|
|
|
|
hidden_states = cast( |
|
torch.Tensor, |
|
index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'), |
|
indices)) |
|
return hidden_states, indices, cu_seqlens, max_seqlen_in_batch |
|
|
|
|
|
def unpad_input_only( |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
) -> torch.Tensor: |
|
"""Like unpad_input, but only return the unpadded first tensor. |
|
|
|
Save a small amount of overhead. |
|
|
|
Arguments: |
|
hidden_states: (batch, seqlen, ...) |
|
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. |
|
|
|
Returns: |
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. |
|
""" |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
rearranged = rearrange(hidden_states, 'b s ... -> (b s) ...') |
|
return index_first_axis(rearranged, indices) |
|
|
|
|
|
def pad_input(hidden_states: torch.Tensor, indices: torch.Tensor, batch: int, |
|
seqlen: int) -> torch.Tensor: |
|
"""Add padding to sequences. |
|
|
|
Arguments: |
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. |
|
indices: (total_nnz) |
|
batch: int batch_size |
|
seqlen: int max sequence length |
|
|
|
Returns: |
|
hidden_states: (batch, seqlen, ...) |
|
""" |
|
output = index_put_first_axis(hidden_states, indices, batch * seqlen) |
|
return rearrange(output, '(b s) ... -> b s ...', b=batch) |
|
|