ngannt commited on
Commit
426f887
1 Parent(s): 674781c

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ - zh
6
+ - id
7
+ - ms
8
+ - th
9
+ - vi
10
+ - tl
11
+ - ta
12
+ - my
13
+ - km
14
+ - lo
15
+ inference: false
16
+ ---
17
+ # SEA-LION-BERT
18
+
19
+ SEA-LION stands for <i>Southeast Asian Languages In One Network</i>.
20
+
21
+ This is the card for the SEA-LION-BERT base model.
22
+
23
+ ## How To Use
24
+
25
+ ```python
26
+ from transformers import AutoModelForMaskedLM, AutoTokenizer
27
+
28
+ tokenizer = AutoTokenizer.from_pretrained('aisingapore/sealion-bert-base', trust_remote_code=True)
29
+ model = AutoModelForMaskedLM.from_pretrained('aisingapore/sealion-bert-base', trust_remote_code=True)
30
+
31
+ # prepare input
32
+ text = "Give me a <|mask|>!!!"
33
+ encoded_input = tokenizer(text, return_tensors='pt')
34
+
35
+ ```
36
+
37
+ ## Model Details
38
+
39
+ ### Model Description
40
+
41
+ The SEA-LION-BERT model is built on the MosaicBERT architecture and has a vocabulary size of 256K.
42
+
43
+ For tokenization, the model employs our custom SEABPETokenizer, which is specially tailored for SEA languages, ensuring optimal model performance.
44
+
45
+ The training data for SEA-LION-BERT encompasses 980B tokens.
46
+
47
+ - **Developed by:** Products Pillar, AI Singapore
48
+ - **Funded by:** Singapore NRF
49
+ - **Model type:** Encoder
50
+ - **Languages:** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
51
+ - **License:** MIT License
52
+
53
+ ## Training Details
54
+
55
+ ### Data
56
+
57
+ SEA-LION was trained on 790B tokens of the following data:
58
+
59
+ | Data Source | Tokens | Percentage |
60
+ |---------------------------|-------:|:----------:|
61
+ | RefinedWeb - English | 571.3B | 72.26% |
62
+ | mC4 - Chinese | 91.2B | 11.54% |
63
+ | mC4 - Indonesian | 14.7B | 1.86% |
64
+ | mC4 - Malay | 2.9B | 0.36% |
65
+ | mC4 - Filipino | 5.3B | 0.67% |
66
+ | mC4 - Burmese | 4.9B | 0.61% |
67
+ | mC4 - Vietnamese | 63.4B | 8.02% |
68
+ | mC4 - Thai | 21.6B | 2.74% |
69
+ | mC4 - Lao | 1.1B | 0.14% |
70
+ | mC4 - Khmer | 3.9B | 0.50% |
71
+ | mC4 - Tamil | 10.2B | 1.29% |
72
+
73
+ ### Infrastructure
74
+
75
+ SEA-LION was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
76
+ on the following hardware:
77
+
78
+ | Training Details | SEA-LION-BERT |
79
+ |----------------------|:-------------:|
80
+ | Nvidia A100 40GB GPU | 4 |
81
+ | Training Duration | 14 days |
82
+
83
+
84
+ ### Configuration
85
+
86
+ | HyperParameter | SEA-LION-BERT |
87
+ |-------------------|:-----------------------:|
88
+ | Precision | bfloat16 |
89
+ | Optimizer | decoupled_adamw |
90
+ | Scheduler | linear_decay_with_warmup|
91
+ | Learning Rate | 5e-4 |
92
+ | Global Batch Size | 448 |
93
+ | Micro Batch Size | 56 |
94
+
95
+
96
+ ## Technical Specifications
97
+
98
+ ### Model Architecture and Objective
99
+
100
+ SEA-LION-BERT is an encoder model using the MosaicBERT architecture.
101
+
102
+ | Parameter | SEA-LION-BERT |
103
+ |-----------------|:-------------:|
104
+ | Layers | 12 |
105
+ | d_model | 768 |
106
+ | head_dim | 12 |
107
+ | Vocabulary | 256000 |
108
+ | Sequence Length | 128 |
109
+
110
+
111
+ ### Tokenizer Details
112
+
113
+ We sample 20M lines from the training data to train the tokenizer.<br>
114
+ The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
115
+ The tokenizer type is Byte-Pair Encoding (BPE).
116
+
117
+
118
+ ## The Team
119
+
120
+ Montalan Jann Railey<br>
121
+ Nguyen Thanh Ngan<br>
122
+ Rengarajan Hamsawardhini<br>
123
+ Teo Leslie<br>
124
+ Tjhi William<br>
125
+
126
+
127
+ ## Acknowledgements
128
+
129
+ AI Singapore is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
130
+ Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.
131
+
132
+ ## Contact
133
+
134
+ For more info, please contact us at sealion@aisingapore.org
bert_layers.py ADDED
@@ -0,0 +1,1075 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 MosaicML Examples authors
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
5
+ # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
6
+ # Copyright (c) 2022, Tri Dao.
7
+
8
+ """Implements Mosaic BERT, with an eye towards the Hugging Face API.
9
+
10
+ Mosaic BERT improves performance over Hugging Face BERT through the following:
11
+
12
+ 1. ALiBi. This architectural change removes positional embeddings and instead encodes positional
13
+ information through attention biases based on query-key position distance. It improves the effectiveness
14
+ of training with shorter sequence lengths by enabling extrapolation to longer sequences.
15
+
16
+ 2. Gated Linear Units (GLU). This architectural change replaces the FFN component of the BERT layer
17
+ to improve overall expressiveness, providing better convergence properties.
18
+
19
+ 3. Flash Attention. The Mosaic BERT's self-attention layer makes use of Flash Attention, which dramatically
20
+ improves the speed of self-attention. Our implementation utilizes a bleeding edge implementation that
21
+ supports attention biases, which allows us to use Flash Attention with ALiBi.
22
+
23
+ 4. Unpadding. Padding is often used to simplify batching across sequences of different lengths. Standard BERT
24
+ implementations waste computation on padded tokens. Mosaic BERT internally unpads to reduce unnecessary computation
25
+ and improve speed. It does this without changing how the user interfaces with the model, thereby
26
+ preserving the simple API of standard implementations.
27
+
28
+
29
+ Currently, Mosaic BERT is available for masked language modeling :class:`BertForMaskedLM` and sequence
30
+ classification :class:`BertForSequenceClassification`. We aim to expand this catalogue in future releases.
31
+
32
+ See :file:`./mosaic_bert.py` for utilities to simplify working with Mosaic BERT in Composer, and for example usage
33
+ of the core Mosaic BERT classes.
34
+ """
35
+
36
+ import copy
37
+ import logging
38
+ import math
39
+ import warnings
40
+ from typing import List, Optional, Tuple, Union
41
+
42
+ import torch
43
+ import torch.nn as nn
44
+ from einops import rearrange
45
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
46
+ from transformers.activations import ACT2FN
47
+ from transformers.modeling_outputs import (MaskedLMOutput,
48
+ SequenceClassifierOutput)
49
+ from transformers.models.bert.modeling_bert import BertPreTrainedModel
50
+
51
+ from .bert_padding import (index_first_axis,
52
+ index_put_first_axis, pad_input,
53
+ unpad_input, unpad_input_only)
54
+ from .configuration_bert import BertConfig
55
+
56
+ try:
57
+ from .flash_attn_triton import flash_attn_qkvpacked_func
58
+ except ImportError as e:
59
+ flash_attn_qkvpacked_func = None
60
+
61
+ logger = logging.getLogger(__name__)
62
+
63
+
64
+ class BertEmbeddings(nn.Module):
65
+ """Construct the embeddings for words, ignoring position.
66
+
67
+ There are no positional embeddings since we use ALiBi and token_type
68
+ embeddings.
69
+
70
+ This module is modeled after the Hugging Face BERT's
71
+ :class:`~transformers.model.bert.modeling_bert.BertEmbeddings`, but is
72
+ modified as part of Mosaic BERT's ALiBi implementation. The key change is
73
+ that position embeddings are removed. Position information instead comes
74
+ from attention biases that scale linearly with the position distance
75
+ between query and key tokens.
76
+
77
+ This module ignores the `position_ids` input to the `forward` method.
78
+ """
79
+
80
+ def __init__(self, config):
81
+ super().__init__()
82
+ self.word_embeddings = nn.Embedding(config.vocab_size,
83
+ config.hidden_size,
84
+ padding_idx=config.pad_token_id)
85
+ # ALiBi doesn't use position embeddings
86
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size,
87
+ config.hidden_size)
88
+
89
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model
90
+ # variable name and be able to load any TensorFlow checkpoint file
91
+ self.LayerNorm = nn.LayerNorm(config.hidden_size,
92
+ eps=config.layer_norm_eps)
93
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
94
+ self.register_buffer('token_type_ids',
95
+ torch.zeros(config.max_position_embeddings,
96
+ dtype=torch.long),
97
+ persistent=False)
98
+
99
+ def forward(
100
+ self,
101
+ input_ids: Optional[torch.LongTensor] = None,
102
+ token_type_ids: Optional[torch.LongTensor] = None,
103
+ position_ids: Optional[torch.LongTensor] = None,
104
+ inputs_embeds: Optional[torch.FloatTensor] = None,
105
+ past_key_values_length: int = 0,
106
+ ) -> torch.Tensor:
107
+ if (input_ids is not None) == (inputs_embeds is not None):
108
+ raise ValueError('Must specify either input_ids or input_embeds!')
109
+ if input_ids is not None:
110
+ input_shape = input_ids.size()
111
+ else:
112
+ assert inputs_embeds is not None # just for type checking
113
+ input_shape = inputs_embeds.size()[:-1]
114
+
115
+ seq_length = input_shape[1]
116
+
117
+ if position_ids is None:
118
+ # great! ALiBi
119
+ pass
120
+
121
+ # Setting the token_type_ids to the registered buffer in constructor
122
+ # where it is all zeros, which usually occurs when it's auto-generated;
123
+ # registered buffer helps users when tracing the model without passing
124
+ # token_type_ids, solves issue #5664
125
+ if token_type_ids is None:
126
+ if hasattr(self, 'token_type_ids'):
127
+ assert isinstance(self.token_type_ids, torch.LongTensor)
128
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
129
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
130
+ input_shape[0], seq_length)
131
+ token_type_ids = buffered_token_type_ids_expanded # type: ignore
132
+ else:
133
+ token_type_ids = torch.zeros(input_shape, # type: ignore
134
+ dtype=torch.long,
135
+ device=self.word_embeddings.device) # type: ignore # yapf: disable
136
+
137
+ if inputs_embeds is None:
138
+ inputs_embeds = self.word_embeddings(input_ids)
139
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
140
+
141
+ embeddings = inputs_embeds + token_type_embeddings
142
+ # no position embeddings! ALiBi
143
+ embeddings = self.LayerNorm(embeddings)
144
+ embeddings = self.dropout(embeddings)
145
+ return embeddings
146
+
147
+
148
+ class BertUnpadSelfAttention(nn.Module):
149
+ """Performs multi-headed self attention on a batch of unpadded sequences.
150
+
151
+ If Triton is installed, this module uses Flash Attention to greatly improve throughput.
152
+ The Flash Attention implementation used in Mosaic BERT supports arbitrary attention biases (which
153
+ we use to implement ALiBi), but does not support attention dropout. If either Triton is not installed
154
+ or `config.attention_probs_dropout_prob > 0`, the implementation will default to a
155
+ math-equivalent pytorch version, which is much slower.
156
+
157
+ See `forward` method for additional detail.
158
+ """
159
+
160
+ def __init__(self, config):
161
+ super().__init__()
162
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
163
+ config, 'embedding_size'):
164
+ raise ValueError(
165
+ f'The hidden size ({config.hidden_size}) is not a multiple of the number of attention '
166
+ f'heads ({config.num_attention_heads})')
167
+
168
+ self.num_attention_heads = config.num_attention_heads
169
+ self.attention_head_size = int(config.hidden_size /
170
+ config.num_attention_heads)
171
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
172
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
173
+ self.p_dropout = config.attention_probs_dropout_prob
174
+ self.Wqkv = nn.Linear(self.all_head_size, 3 * config.hidden_size)
175
+
176
+ # Warn if defaulting to pytorch because of import issues
177
+ if flash_attn_qkvpacked_func is None:
178
+ warnings.warn(
179
+ 'Unable to import Triton; defaulting MosaicBERT attention implementation to pytorch (this will reduce throughput when using this model).'
180
+ )
181
+
182
+ def forward(self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor,
183
+ max_seqlen_in_batch: int, indices: torch.Tensor,
184
+ attn_mask: torch.Tensor, bias: torch.Tensor) -> torch.Tensor:
185
+ """Perform self-attention.
186
+
187
+ If dropout is zero, then we can use the Triton kernel, so we do that. However, if not, we send through a standard PyTorch
188
+ implementation of self-attention.
189
+
190
+ The arguments are unpadded, and our implementations of attention require padded arguments,
191
+ so we first call `pad_input`. Once we compute attention, we re-unpad our outputs for the other layers.
192
+ The pad/unpad operations add overhead, but not sending pad tokens through ffs saves compute.
193
+ It is possible to write an unpadded implementation of attention (in Triton and PyTorch), which we will eventually do.
194
+
195
+ Args:
196
+ hidden_states: (total_nnz, dim)
197
+ cu_seqlens: (batch + 1,)
198
+ max_seqlen_in_batch: int
199
+ indices: (total_nnz,)
200
+ attn_mask: (batch, max_seqlen_in_batch)
201
+ bias: (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch)
202
+
203
+ Returns:
204
+ attention: (total_nnz, dim)
205
+ """
206
+ qkv = self.Wqkv(hidden_states)
207
+ qkv = pad_input(qkv, indices, cu_seqlens.shape[0] - 1,
208
+ max_seqlen_in_batch) # batch, max_seqlen_in_batch, thd
209
+ qkv = rearrange(qkv,
210
+ 'b s (t h d) -> b s t h d',
211
+ t=3,
212
+ h=self.num_attention_heads)
213
+ if self.p_dropout or flash_attn_qkvpacked_func is None:
214
+ # if we have nonzero attention dropout (e.g. during fine-tuning) or no Triton, compute attention in PyTorch
215
+ q = qkv[:, :, 0, :, :].permute(0, 2, 1, 3) # b h s d
216
+ k = qkv[:, :, 1, :, :].permute(0, 2, 3, 1) # b h d s
217
+ v = qkv[:, :, 2, :, :].permute(0, 2, 1, 3) # b h s d
218
+ attention_scores = torch.matmul(q, k) / math.sqrt(
219
+ self.attention_head_size)
220
+ attention_scores = attention_scores + bias
221
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
222
+ attention_probs = self.dropout(attention_probs)
223
+ attention = torch.matmul(attention_probs, v).permute(0, 2, 1,
224
+ 3) # b s h d
225
+ else:
226
+ # Triton implementation only supports 0 attention dropout
227
+ convert_dtype = qkv.dtype not in [torch.float16, torch.bfloat16]
228
+ if convert_dtype:
229
+ # Triton implementation only supports fp16 and bf16
230
+ orig_dtype = qkv.dtype
231
+ qkv = qkv.to(torch.float16)
232
+ bias_dtype = bias.dtype
233
+ bias = bias.to(torch.float16)
234
+ attention = flash_attn_qkvpacked_func(qkv, bias)
235
+ attention = attention.to(orig_dtype)
236
+ bias = bias.to(bias_dtype)
237
+ else:
238
+ attention = flash_attn_qkvpacked_func(qkv, bias)
239
+
240
+ # attn_mask is 1 for attend and 0 for don't
241
+ attention = unpad_input_only(attention, torch.squeeze(attn_mask) == 1)
242
+ return rearrange(attention, 'nnz h d -> nnz (h d)')
243
+
244
+
245
+ # Copy of transformer's library BertSelfOutput that will not be caught by surgery methods looking for HF BERT modules.
246
+ class BertSelfOutput(nn.Module):
247
+ """Computes the output of the attention layer.
248
+
249
+ This module is modeled after the Hugging Face BERT's
250
+ :class:`~transformers.model.bert.modeling_bert.BertSelfOutput`.
251
+ The implementation is identical. Rather than use the original module
252
+ directly, we re-implement it here so that Mosaic BERT's modules will not
253
+ be affected by any Composer surgery algorithm that modifies Hugging Face
254
+ BERT modules.
255
+ """
256
+
257
+ def __init__(self, config):
258
+ super().__init__()
259
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
260
+ self.LayerNorm = nn.LayerNorm(config.hidden_size,
261
+ eps=config.layer_norm_eps)
262
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
263
+
264
+ def forward(self, hidden_states: torch.Tensor,
265
+ input_tensor: torch.Tensor) -> torch.Tensor:
266
+ hidden_states = self.dense(hidden_states)
267
+ hidden_states = self.dropout(hidden_states)
268
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
269
+ return hidden_states
270
+
271
+
272
+ class BertUnpadAttention(nn.Module):
273
+ """Chains attention, Dropout, and LayerNorm for Mosaic BERT."""
274
+
275
+ def __init__(self, config):
276
+ super().__init__()
277
+ self.self = BertUnpadSelfAttention(config)
278
+ self.output = BertSelfOutput(config)
279
+
280
+ def forward(
281
+ self,
282
+ input_tensor: torch.Tensor,
283
+ cu_seqlens: torch.Tensor,
284
+ max_s: int,
285
+ subset_idx: Optional[torch.Tensor] = None,
286
+ indices: Optional[torch.Tensor] = None,
287
+ attn_mask: Optional[torch.Tensor] = None,
288
+ bias: Optional[torch.Tensor] = None,
289
+ ) -> torch.Tensor:
290
+ """Forward pass for scaled self-attention without padding.
291
+
292
+ Arguments:
293
+ input_tensor: (total_nnz, dim)
294
+ cu_seqlens: (batch + 1,)
295
+ max_s: int
296
+ subset_idx: () set of indices whose values we care about at the end of the layer
297
+ (e.g., the masked tokens, if this is the final layer).
298
+ indices: None or (total_nnz,)
299
+ attn_mask: None or (batch, max_seqlen_in_batch)
300
+ bias: None or (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch)
301
+ """
302
+ self_output = self.self(input_tensor, cu_seqlens, max_s, indices,
303
+ attn_mask, bias)
304
+ if subset_idx is not None:
305
+ return self.output(index_first_axis(self_output, subset_idx),
306
+ index_first_axis(input_tensor, subset_idx))
307
+ else:
308
+ return self.output(self_output, input_tensor)
309
+
310
+
311
+ class BertGatedLinearUnitMLP(nn.Module):
312
+ """Applies the FFN at the end of each Mosaic BERT layer.
313
+
314
+ Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate`
315
+ and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality, but
316
+ introduces Gated Linear Units.
317
+
318
+ Note: Mosaic BERT adds parameters in order to implement Gated Linear Units. To keep parameter count consistent with that of a
319
+ standard Hugging Face BERT, scale down `config.intermediate_size` by 2/3. For example, a Mosaic BERT constructed with
320
+ `config.intermediate_size=2048` will have the same parameter footprint as its Hugging Face BERT counterpart constructed
321
+ with the `config.intermediate_size=3072`.
322
+ However, in most cases it will not be necessary to adjust `config.intermediate_size` since, despite the increased
323
+ parameter size, Mosaic BERT typically offers a net higher throughput than a Hugging Face BERT built from the same `config`.
324
+ """
325
+
326
+ def __init__(self, config):
327
+ super().__init__()
328
+ self.config = config
329
+ self.gated_layers = nn.Linear(config.hidden_size,
330
+ config.intermediate_size * 2,
331
+ bias=False)
332
+ self.act = nn.GELU(approximate='none')
333
+ self.wo = nn.Linear(config.intermediate_size, config.hidden_size)
334
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
335
+ self.layernorm = nn.LayerNorm(config.hidden_size,
336
+ eps=config.layer_norm_eps)
337
+
338
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
339
+ """Compute new hidden states from current hidden states.
340
+
341
+ Args:
342
+ hidden_states (torch.Tensor): The (unpadded) hidden states from
343
+ the attention layer [nnz, dim].
344
+ """
345
+ residual_connection = hidden_states
346
+ # compute the activation
347
+ hidden_states = self.gated_layers(hidden_states)
348
+ gated = hidden_states[:, :self.config.intermediate_size]
349
+ non_gated = hidden_states[:, self.config.intermediate_size:]
350
+ hidden_states = self.act(gated) * non_gated
351
+ hidden_states = self.dropout(hidden_states)
352
+ # multiply by the second matrix
353
+ hidden_states = self.wo(hidden_states)
354
+ # add the residual connection and post-LN
355
+ hidden_states = self.layernorm(hidden_states + residual_connection)
356
+ return hidden_states
357
+
358
+
359
+ class BertLayer(nn.Module):
360
+ """Composes the Mosaic BERT attention and FFN blocks into a single layer."""
361
+
362
+ def __init__(self, config):
363
+ super(BertLayer, self).__init__()
364
+ self.attention = BertUnpadAttention(config)
365
+ self.mlp = BertGatedLinearUnitMLP(config)
366
+
367
+ def forward(
368
+ self,
369
+ hidden_states: torch.Tensor,
370
+ cu_seqlens: torch.Tensor,
371
+ seqlen: int,
372
+ subset_idx: Optional[torch.Tensor] = None,
373
+ indices: Optional[torch.Tensor] = None,
374
+ attn_mask: Optional[torch.Tensor] = None,
375
+ bias: Optional[torch.Tensor] = None,
376
+ ) -> torch.Tensor:
377
+ """Forward pass for a BERT layer, including both attention and MLP.
378
+
379
+ Args:
380
+ hidden_states: (total_nnz, dim)
381
+ cu_seqlens: (batch + 1,)
382
+ seqlen: int
383
+ subset_idx: () set of indices whose values we care about at the end of the layer
384
+ (e.g., the masked tokens, if this is the final layer).
385
+ indices: None or (total_nnz,)
386
+ attn_mask: None or (batch, max_seqlen_in_batch)
387
+ bias: None or (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch)
388
+ """
389
+ attention_output = self.attention(hidden_states, cu_seqlens, seqlen,
390
+ subset_idx, indices, attn_mask, bias)
391
+ layer_output = self.mlp(attention_output)
392
+ return layer_output
393
+
394
+
395
+ class BertEncoder(nn.Module):
396
+ """A stack of BERT layers providing the backbone of Mosaic BERT.
397
+
398
+ This module is modeled after the Hugging Face BERT's :class:`~transformers.model.bert.modeling_bert.BertEncoder`,
399
+ but with substantial modifications to implement unpadding and ALiBi.
400
+
401
+ Compared to the analogous Hugging Face BERT module, this module handles unpadding to reduce unnecessary computation
402
+ at padded tokens, and pre-computes attention biases to implement ALiBi.
403
+ """
404
+
405
+ def __init__(self, config):
406
+ super().__init__()
407
+ layer = BertLayer(config)
408
+ self.layer = nn.ModuleList(
409
+ [copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
410
+
411
+ self.num_attention_heads = config.num_attention_heads
412
+
413
+ # The alibi mask will be dynamically expanded if it is too small for
414
+ # the input the model receives. But it generally helps to initialize it
415
+ # to a reasonably large size to help pre-allocate CUDA memory.
416
+ # The default `alibi_starting_size` is 512.
417
+ self._current_alibi_size = int(config.alibi_starting_size)
418
+ self.alibi = torch.zeros(
419
+ (1, self.num_attention_heads, self._current_alibi_size,
420
+ self._current_alibi_size))
421
+ self.rebuild_alibi_tensor(size=config.alibi_starting_size)
422
+
423
+ def rebuild_alibi_tensor(self,
424
+ size: int,
425
+ device: Optional[Union[torch.device, str]] = None):
426
+ # Alibi
427
+ # Following https://github.com/ofirpress/attention_with_linear_biases/issues/5 (Implementation 1)
428
+ # In the causal case, you can exploit the fact that softmax is invariant to a uniform translation
429
+ # of the logits, which makes the math work out *after* applying causal masking. If no causal masking
430
+ # will be applied, it is necessary to construct the diagonal mask.
431
+ n_heads = self.num_attention_heads
432
+
433
+ def _get_alibi_head_slopes(n_heads: int) -> List[float]:
434
+
435
+ def get_slopes_power_of_2(n_heads: int) -> List[float]:
436
+ start = (2**(-2**-(math.log2(n_heads) - 3)))
437
+ ratio = start
438
+ return [start * ratio**i for i in range(n_heads)]
439
+
440
+ # In the paper, they only train models that have 2^a heads for some a. This function
441
+ # has some good properties that only occur when the input is a power of 2. To
442
+ # maintain that even when the number of heads is not a power of 2, we use a
443
+ # workaround.
444
+ if math.log2(n_heads).is_integer():
445
+ return get_slopes_power_of_2(n_heads)
446
+
447
+ closest_power_of_2 = 2**math.floor(math.log2(n_heads))
448
+ slopes_a = get_slopes_power_of_2(closest_power_of_2)
449
+ slopes_b = _get_alibi_head_slopes(2 * closest_power_of_2)
450
+ slopes_b = slopes_b[0::2][:n_heads - closest_power_of_2]
451
+ return slopes_a + slopes_b
452
+
453
+ context_position = torch.arange(size, device=device)[:, None]
454
+ memory_position = torch.arange(size, device=device)[None, :]
455
+ relative_position = torch.abs(memory_position - context_position)
456
+ # [n_heads, max_token_length, max_token_length]
457
+ relative_position = relative_position.unsqueeze(0).expand(
458
+ n_heads, -1, -1)
459
+ slopes = torch.Tensor(_get_alibi_head_slopes(n_heads)).to(device)
460
+ alibi = slopes.unsqueeze(1).unsqueeze(1) * -relative_position
461
+ # [1, n_heads, max_token_length, max_token_length]
462
+ alibi = alibi.unsqueeze(0)
463
+ assert alibi.shape == torch.Size([1, n_heads, size, size])
464
+
465
+ self._current_alibi_size = size
466
+ self.alibi = alibi
467
+
468
+ def forward(
469
+ self,
470
+ hidden_states: torch.Tensor,
471
+ attention_mask: torch.Tensor,
472
+ output_all_encoded_layers: Optional[bool] = True,
473
+ subset_mask: Optional[torch.Tensor] = None,
474
+ ) -> List[torch.Tensor]:
475
+
476
+ extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
477
+ extended_attention_mask = extended_attention_mask.to(
478
+ dtype=next(self.parameters()).dtype) # fp16 compatibility
479
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
480
+
481
+ attention_mask_bool = attention_mask.bool()
482
+ batch, seqlen = hidden_states.shape[:2]
483
+ # Unpad inputs and mask. It will remove tokens that are padded.
484
+ # Assume ntokens is total number of tokens (padded and non-padded)
485
+ # and ntokens_unpad is total number of non-padded tokens.
486
+ # Then unpadding performs the following compression of the inputs:
487
+ # hidden_states[ntokens,hidden] -> hidden_states[ntokens_unpad,hidden]
488
+ hidden_states, indices, cu_seqlens, _ = unpad_input(
489
+ hidden_states, attention_mask_bool)
490
+
491
+ # Add alibi matrix to extended_attention_mask
492
+ if self._current_alibi_size < seqlen:
493
+ # Rebuild the alibi tensor when needed
494
+ warnings.warn(
495
+ f'Increasing alibi size from {self._current_alibi_size} to {seqlen}'
496
+ )
497
+ self.rebuild_alibi_tensor(size=seqlen, device=hidden_states.device)
498
+ elif self.alibi.device != hidden_states.device:
499
+ # Device catch-up
500
+ self.alibi = self.alibi.to(hidden_states.device)
501
+ alibi_bias = self.alibi[:, :, :seqlen, :seqlen]
502
+ attn_bias = extended_attention_mask[:, :, :seqlen, :seqlen]
503
+ alibi_attn_mask = attn_bias + alibi_bias
504
+
505
+ all_encoder_layers = []
506
+ if subset_mask is None:
507
+ for layer_module in self.layer:
508
+ hidden_states = layer_module(hidden_states,
509
+ cu_seqlens,
510
+ seqlen,
511
+ None,
512
+ indices,
513
+ attn_mask=attention_mask,
514
+ bias=alibi_attn_mask)
515
+ if output_all_encoded_layers:
516
+ all_encoder_layers.append(hidden_states)
517
+ # Pad inputs and mask. It will insert back zero-padded tokens.
518
+ # Assume ntokens is total number of tokens (padded and non-padded)
519
+ # and ntokens_unpad is total number of non-padded tokens.
520
+ # Then padding performs the following de-compression:
521
+ # hidden_states[ntokens_unpad,hidden] -> hidden_states[ntokens,hidden]
522
+ hidden_states = pad_input(hidden_states, indices, batch, seqlen)
523
+ else:
524
+ for i in range(len(self.layer) - 1):
525
+ layer_module = self.layer[i]
526
+ hidden_states = layer_module(hidden_states,
527
+ cu_seqlens,
528
+ seqlen,
529
+ None,
530
+ indices,
531
+ attn_mask=attention_mask,
532
+ bias=alibi_attn_mask)
533
+ if output_all_encoded_layers:
534
+ all_encoder_layers.append(hidden_states)
535
+ subset_idx = torch.nonzero(subset_mask[attention_mask_bool],
536
+ as_tuple=False).flatten()
537
+ hidden_states = self.layer[-1](hidden_states,
538
+ cu_seqlens,
539
+ seqlen,
540
+ subset_idx=subset_idx,
541
+ indices=indices,
542
+ attn_mask=attention_mask,
543
+ bias=alibi_attn_mask)
544
+
545
+ if not output_all_encoded_layers:
546
+ all_encoder_layers.append(hidden_states)
547
+ return all_encoder_layers
548
+
549
+
550
+ class BertPooler(nn.Module):
551
+
552
+ def __init__(self, config):
553
+ super(BertPooler, self).__init__()
554
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
555
+ self.activation = nn.Tanh()
556
+
557
+ def forward(self,
558
+ hidden_states: torch.Tensor,
559
+ pool: Optional[bool] = True) -> torch.Tensor:
560
+ # We "pool" the model by simply taking the hidden state corresponding
561
+ # to the first token.
562
+ first_token_tensor = hidden_states[:, 0] if pool else hidden_states
563
+ pooled_output = self.dense(first_token_tensor)
564
+ pooled_output = self.activation(pooled_output)
565
+ return pooled_output
566
+
567
+
568
+ class BertPredictionHeadTransform(nn.Module):
569
+
570
+ def __init__(self, config):
571
+ super().__init__()
572
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
573
+ if isinstance(config.hidden_act, str):
574
+ self.transform_act_fn = ACT2FN[config.hidden_act]
575
+ else:
576
+ self.transform_act_fn = config.hidden_act
577
+ self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=1e-12)
578
+
579
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
580
+ hidden_states = self.dense(hidden_states)
581
+ hidden_states = self.transform_act_fn(hidden_states)
582
+ hidden_states = self.LayerNorm(hidden_states)
583
+ return hidden_states
584
+
585
+
586
+ class BertModel(BertPreTrainedModel):
587
+ """Overall BERT model.
588
+
589
+ Args:
590
+ config: a BertConfig class instance with the configuration to build a new model
591
+
592
+ Inputs:
593
+ `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
594
+ with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
595
+ `extract_features.py`, `run_classifier.py` and `run_squad.py`)
596
+ `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
597
+ types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
598
+ a `sentence B` token (see BERT paper for more details).
599
+ `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
600
+ selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
601
+ input sequence length in the current batch. It's the mask that we typically use for attention when
602
+ a batch has varying length sentences.
603
+ `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
604
+
605
+ Outputs: Tuple of (encoded_layers, pooled_output)
606
+ `encoded_layers`: controlled by `output_all_encoded_layers` argument:
607
+ - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
608
+ of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
609
+ encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
610
+ - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
611
+ to the last attention block of shape [batch_size, sequence_length, hidden_size],
612
+ `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
613
+ classifier pretrained on top of the hidden state associated to the first character of the
614
+ input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
615
+
616
+ Example usage:
617
+ ```python
618
+ # Already been converted into WordPiece token ids
619
+ input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
620
+ input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
621
+ token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
622
+ config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
623
+ num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
624
+ model = BertModel(config=config)
625
+ all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
626
+ ```
627
+ """
628
+
629
+ def __init__(self, config, add_pooling_layer=True):
630
+ super(BertModel, self).__init__(config)
631
+ self.embeddings = BertEmbeddings(config)
632
+ self.encoder = BertEncoder(config)
633
+ self.pooler = BertPooler(config) if add_pooling_layer else None
634
+ self.post_init()
635
+
636
+ def get_input_embeddings(self):
637
+ return self.embeddings.word_embeddings
638
+
639
+ def set_input_embeddings(self, value):
640
+ self.embeddings.word_embeddings = value
641
+
642
+ def forward(
643
+ self,
644
+ input_ids: torch.Tensor,
645
+ token_type_ids: Optional[torch.Tensor] = None,
646
+ attention_mask: Optional[torch.Tensor] = None,
647
+ position_ids: Optional[torch.Tensor] = None,
648
+ output_all_encoded_layers: Optional[bool] = False,
649
+ masked_tokens_mask: Optional[torch.Tensor] = None,
650
+ **kwargs
651
+ ) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
652
+ if attention_mask is None:
653
+ attention_mask = torch.ones_like(input_ids)
654
+ if token_type_ids is None:
655
+ token_type_ids = torch.zeros_like(input_ids)
656
+
657
+ embedding_output = self.embeddings(input_ids, token_type_ids,
658
+ position_ids)
659
+
660
+ subset_mask = []
661
+ first_col_mask = []
662
+
663
+ if masked_tokens_mask is None:
664
+ subset_mask = None
665
+ else:
666
+ first_col_mask = torch.zeros_like(masked_tokens_mask)
667
+ first_col_mask[:, 0] = True
668
+ subset_mask = masked_tokens_mask | first_col_mask
669
+
670
+ encoder_outputs = self.encoder(
671
+ embedding_output,
672
+ attention_mask,
673
+ output_all_encoded_layers=output_all_encoded_layers,
674
+ subset_mask=subset_mask)
675
+
676
+ if masked_tokens_mask is None:
677
+ sequence_output = encoder_outputs[-1]
678
+ pooled_output = self.pooler(
679
+ sequence_output) if self.pooler is not None else None
680
+ else:
681
+ # TD [2022-03-01]: the indexing here is very tricky.
682
+ attention_mask_bool = attention_mask.bool()
683
+ subset_idx = subset_mask[attention_mask_bool] # type: ignore
684
+ sequence_output = encoder_outputs[-1][
685
+ masked_tokens_mask[attention_mask_bool][subset_idx]]
686
+ if self.pooler is not None:
687
+ pool_input = encoder_outputs[-1][
688
+ first_col_mask[attention_mask_bool][subset_idx]]
689
+ pooled_output = self.pooler(pool_input, pool=False)
690
+ else:
691
+ pooled_output = None
692
+
693
+ if not output_all_encoded_layers:
694
+ encoder_outputs = sequence_output
695
+
696
+ if self.pooler is not None:
697
+ return encoder_outputs, pooled_output
698
+
699
+ return encoder_outputs, None
700
+
701
+
702
+ ###################
703
+ # Bert Heads
704
+ ###################
705
+ class BertLMPredictionHead(nn.Module):
706
+
707
+ def __init__(self, config, bert_model_embedding_weights):
708
+ super().__init__()
709
+ self.transform = BertPredictionHeadTransform(config)
710
+ # The output weights are the same as the input embeddings, but there is
711
+ # an output-only bias for each token.
712
+ self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
713
+ bert_model_embedding_weights.size(0))
714
+ self.decoder.weight = bert_model_embedding_weights
715
+
716
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
717
+ hidden_states = self.transform(hidden_states)
718
+ hidden_states = self.decoder(hidden_states)
719
+ return hidden_states
720
+
721
+
722
+ class BertOnlyMLMHead(nn.Module):
723
+
724
+ def __init__(self, config, bert_model_embedding_weights):
725
+ super().__init__()
726
+ self.predictions = BertLMPredictionHead(config,
727
+ bert_model_embedding_weights)
728
+
729
+ def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
730
+ prediction_scores = self.predictions(sequence_output)
731
+ return prediction_scores
732
+
733
+
734
+ class BertOnlyNSPHead(nn.Module):
735
+
736
+ def __init__(self, config):
737
+ super().__init__()
738
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
739
+
740
+ def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
741
+ seq_relationship_score = self.seq_relationship(pooled_output)
742
+ return seq_relationship_score
743
+
744
+
745
+ #####################
746
+ # Various Bert models
747
+ #####################
748
+
749
+
750
+ class BertForPreTraining(BertPreTrainedModel):
751
+ #TBD: Coming in Future Commit
752
+ pass
753
+
754
+
755
+ class BertLMHeadModel(BertPreTrainedModel):
756
+ #TBD: Coming in Future Commit
757
+ pass
758
+
759
+
760
+ class BertForMaskedLM(BertPreTrainedModel):
761
+
762
+ config_class = BertConfig
763
+
764
+ def __init__(self, config):
765
+ super().__init__(config)
766
+
767
+ if config.is_decoder:
768
+ warnings.warn(
769
+ 'If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for '
770
+ 'bi-directional self-attention.')
771
+
772
+ self.bert = BertModel(config, add_pooling_layer=False)
773
+ self.cls = BertOnlyMLMHead(config,
774
+ self.bert.embeddings.word_embeddings.weight)
775
+
776
+ # Initialize weights and apply final processing
777
+ self.post_init()
778
+
779
+ @classmethod
780
+ def from_composer(cls,
781
+ pretrained_checkpoint,
782
+ state_dict=None,
783
+ cache_dir=None,
784
+ from_tf=False,
785
+ config=None,
786
+ *inputs,
787
+ **kwargs):
788
+ """Load from pre-trained."""
789
+ model = cls(config, *inputs, **kwargs)
790
+ if from_tf:
791
+ raise ValueError(
792
+ 'Mosaic BERT does not support loading TensorFlow weights.')
793
+
794
+ state_dict = torch.load(pretrained_checkpoint)
795
+ # If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
796
+ consume_prefix_in_state_dict_if_present(state_dict, prefix='model.')
797
+ missing_keys, unexpected_keys = model.load_state_dict(state_dict,
798
+ strict=False)
799
+
800
+ if len(missing_keys) > 0:
801
+ logger.warning(
802
+ f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}"
803
+ )
804
+ if len(unexpected_keys) > 0:
805
+ logger.warning(
806
+ f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}"
807
+ )
808
+
809
+ return model
810
+
811
+ def get_output_embeddings(self):
812
+ return self.cls.predictions.decoder
813
+
814
+ def set_output_embeddings(self, new_embeddings):
815
+ self.cls.predictions.decoder = new_embeddings
816
+
817
+ def forward(
818
+ self,
819
+ input_ids: Optional[torch.Tensor] = None,
820
+ attention_mask: Optional[torch.Tensor] = None,
821
+ token_type_ids: Optional[torch.Tensor] = None,
822
+ position_ids: Optional[torch.Tensor] = None,
823
+ head_mask: Optional[torch.Tensor] = None,
824
+ inputs_embeds: Optional[torch.Tensor] = None,
825
+ encoder_hidden_states: Optional[torch.Tensor] = None,
826
+ encoder_attention_mask: Optional[torch.Tensor] = None,
827
+ labels: Optional[torch.Tensor] = None,
828
+ output_attentions: Optional[bool] = None,
829
+ output_hidden_states: Optional[bool] = None,
830
+ return_dict: Optional[bool] = None,
831
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
832
+ # labels should be a `torch.LongTensor` of shape
833
+ # `(batch_size, sequence_length)`. These are used for computing the
834
+ # masked language modeling loss.
835
+ #
836
+ # Indices should be in `[-100, 0, ..., config.vocab_size]` (see
837
+ # `input_ids` docstring) Tokens with indices set to `-100` are ignored
838
+ # (masked), the loss is only computed for the tokens with labels in `[0,
839
+ # ..., config.vocab_size]`
840
+ #
841
+ # Prediction scores are only computed for masked tokens and the (bs,
842
+ # seqlen) dimensions are flattened
843
+ if (input_ids is not None) == (inputs_embeds is not None):
844
+ raise ValueError('Must specify either input_ids or input_embeds!')
845
+
846
+ if labels is None:
847
+ masked_tokens_mask = None
848
+ else:
849
+ masked_tokens_mask = labels > 0
850
+
851
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
852
+
853
+ outputs = self.bert(
854
+ input_ids,
855
+ attention_mask=attention_mask,
856
+ token_type_ids=token_type_ids,
857
+ position_ids=position_ids,
858
+ head_mask=head_mask,
859
+ inputs_embeds=inputs_embeds,
860
+ encoder_hidden_states=encoder_hidden_states,
861
+ encoder_attention_mask=encoder_attention_mask,
862
+ output_attentions=output_attentions,
863
+ output_hidden_states=output_hidden_states,
864
+ return_dict=return_dict,
865
+ masked_tokens_mask=masked_tokens_mask,
866
+ )
867
+
868
+ sequence_output = outputs[0]
869
+ prediction_scores = self.cls(sequence_output)
870
+
871
+ loss = None
872
+ if labels is not None:
873
+ # Compute loss
874
+ loss_fct = nn.CrossEntropyLoss()
875
+ masked_token_idx = torch.nonzero(labels.flatten() > 0,
876
+ as_tuple=False).flatten()
877
+ loss = loss_fct(prediction_scores,
878
+ labels.flatten()[masked_token_idx])
879
+
880
+ assert input_ids is not None, 'Coding error; please open an issue'
881
+ batch, seqlen = input_ids.shape[:2]
882
+ prediction_scores = rearrange(index_put_first_axis(
883
+ prediction_scores, masked_token_idx, batch * seqlen),
884
+ '(b s) d -> b s d',
885
+ b=batch)
886
+
887
+ if not return_dict:
888
+ output = (prediction_scores,) + outputs[2:]
889
+ return ((loss,) + output) if loss is not None else output
890
+
891
+ return MaskedLMOutput(
892
+ loss=loss,
893
+ logits=prediction_scores,
894
+ hidden_states=None,
895
+ attentions=None,
896
+ )
897
+
898
+ def prepare_inputs_for_generation(self, input_ids: torch.Tensor,
899
+ attention_mask: torch.Tensor,
900
+ **model_kwargs):
901
+ input_shape = input_ids.shape
902
+ effective_batch_size = input_shape[0]
903
+
904
+ # add a dummy token
905
+ if self.config.pad_token_id is None:
906
+ raise ValueError('The PAD token should be defined for generation')
907
+
908
+ attention_mask = torch.cat([
909
+ attention_mask,
910
+ attention_mask.new_zeros((attention_mask.shape[0], 1))
911
+ ],
912
+ dim=-1)
913
+ dummy_token = torch.full((effective_batch_size, 1),
914
+ self.config.pad_token_id,
915
+ dtype=torch.long,
916
+ device=input_ids.device)
917
+ input_ids = torch.cat([input_ids, dummy_token], dim=1)
918
+
919
+ return {'input_ids': input_ids, 'attention_mask': attention_mask}
920
+
921
+
922
+ class BertForNextSentencePrediction(BertPreTrainedModel):
923
+ #TBD: Push in future commit
924
+ pass
925
+
926
+
927
+ class BertForSequenceClassification(BertPreTrainedModel):
928
+ """Bert Model transformer with a sequence classification/regression head.
929
+
930
+ This head is just a linear layer on top of the pooled output. Used for,
931
+ e.g., GLUE tasks.
932
+ """
933
+
934
+ def __init__(self, config):
935
+ super().__init__(config)
936
+ self.num_labels = config.num_labels
937
+ self.config = config
938
+
939
+ self.bert = BertModel(config)
940
+ classifier_dropout = (config.classifier_dropout
941
+ if config.classifier_dropout is not None else
942
+ config.hidden_dropout_prob)
943
+ self.dropout = nn.Dropout(classifier_dropout)
944
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
945
+
946
+ # Initialize weights and apply final processing
947
+ self.post_init()
948
+
949
+ @classmethod
950
+ def from_composer(cls,
951
+ pretrained_checkpoint,
952
+ state_dict=None,
953
+ cache_dir=None,
954
+ from_tf=False,
955
+ config=None,
956
+ *inputs,
957
+ **kwargs):
958
+ """Load from pre-trained."""
959
+ model = cls(config, *inputs, **kwargs)
960
+ if from_tf:
961
+ raise ValueError(
962
+ 'Mosaic BERT does not support loading TensorFlow weights.')
963
+
964
+ state_dict = torch.load(pretrained_checkpoint)
965
+ # If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
966
+ consume_prefix_in_state_dict_if_present(state_dict, prefix='model.')
967
+ missing_keys, unexpected_keys = model.load_state_dict(state_dict,
968
+ strict=False)
969
+
970
+ if len(missing_keys) > 0:
971
+ logger.warning(
972
+ f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}"
973
+ )
974
+ if len(unexpected_keys) > 0:
975
+ logger.warning(
976
+ f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}"
977
+ )
978
+
979
+ return model
980
+
981
+ def forward(
982
+ self,
983
+ input_ids: Optional[torch.Tensor] = None,
984
+ attention_mask: Optional[torch.Tensor] = None,
985
+ token_type_ids: Optional[torch.Tensor] = None,
986
+ position_ids: Optional[torch.Tensor] = None,
987
+ head_mask: Optional[torch.Tensor] = None,
988
+ inputs_embeds: Optional[torch.Tensor] = None,
989
+ labels: Optional[torch.Tensor] = None,
990
+ output_attentions: Optional[bool] = None,
991
+ output_hidden_states: Optional[bool] = None,
992
+ return_dict: Optional[bool] = None,
993
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
994
+ # labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
995
+ # Labels for computing the sequence classification/regression loss.
996
+ # Indices should be in `[0, ..., config.num_labels - 1]`.
997
+ # If `config.num_labels == 1` a regression loss is computed
998
+ # (mean-square loss). If `config.num_labels > 1` a classification loss
999
+ # is computed (cross-entropy).
1000
+
1001
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1002
+
1003
+ outputs = self.bert(
1004
+ input_ids,
1005
+ attention_mask=attention_mask,
1006
+ token_type_ids=token_type_ids,
1007
+ position_ids=position_ids,
1008
+ head_mask=head_mask,
1009
+ inputs_embeds=inputs_embeds,
1010
+ output_attentions=output_attentions,
1011
+ output_hidden_states=output_hidden_states,
1012
+ return_dict=return_dict,
1013
+ )
1014
+
1015
+ pooled_output = outputs[1]
1016
+
1017
+ pooled_output = self.dropout(pooled_output)
1018
+ logits = self.classifier(pooled_output)
1019
+
1020
+ loss = None
1021
+ if labels is not None:
1022
+ # Compute loss
1023
+ if self.config.problem_type is None:
1024
+ if self.num_labels == 1:
1025
+ self.config.problem_type = 'regression'
1026
+ elif self.num_labels > 1 and (labels.dtype == torch.long or
1027
+ labels.dtype == torch.int):
1028
+ self.config.problem_type = 'single_label_classification'
1029
+ else:
1030
+ self.config.problem_type = 'multi_label_classification'
1031
+
1032
+ if self.config.problem_type == 'regression':
1033
+ loss_fct = nn.MSELoss()
1034
+ if self.num_labels == 1:
1035
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1036
+ else:
1037
+ loss = loss_fct(logits, labels)
1038
+ elif self.config.problem_type == 'single_label_classification':
1039
+ loss_fct = nn.CrossEntropyLoss()
1040
+ loss = loss_fct(logits.view(-1, self.num_labels),
1041
+ labels.view(-1))
1042
+ elif self.config.problem_type == 'multi_label_classification':
1043
+ loss_fct = nn.BCEWithLogitsLoss()
1044
+ loss = loss_fct(logits, labels)
1045
+
1046
+ if not return_dict:
1047
+ output = (logits,) + outputs[2:]
1048
+ return ((loss,) + output) if loss is not None else output
1049
+
1050
+ return SequenceClassifierOutput(
1051
+ loss=loss,
1052
+ logits=logits,
1053
+ hidden_states=None,
1054
+ attentions=None,
1055
+ )
1056
+
1057
+
1058
+ class BertForMultipleChoice(BertPreTrainedModel):
1059
+ #TBD: Push in future commit
1060
+ pass
1061
+
1062
+
1063
+ class BertForTokenClassification(BertPreTrainedModel):
1064
+ #TBD: Push in future commit
1065
+ pass
1066
+
1067
+
1068
+ class BertForQuestionAnswering(BertPreTrainedModel):
1069
+ """Bert Model with a span classification head.
1070
+
1071
+ This is used for extractive question-answering tasks like SQuAD (a linear
1072
+ layers on top of the hidden states' output to compute `span start logits`
1073
+ and `span end logits`).
1074
+ """
1075
+ #TBD: Push in future commit
bert_padding.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 MosaicML Examples authors
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
5
+ # Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
6
+
7
+ """Helper functions for padding and unpadding batches.
8
+
9
+ These functions are used extensively throughout the Mosaic BERT implementation
10
+ in `bert_layers.py`.
11
+ """
12
+
13
+ from typing import Tuple, cast
14
+
15
+ import torch
16
+ import torch.nn.functional as F
17
+ from einops import rearrange, repeat
18
+
19
+
20
+ class IndexFirstAxis(torch.autograd.Function):
21
+
22
+ @staticmethod
23
+ def forward(ctx, input: torch.Tensor,
24
+ indices: torch.Tensor) -> torch.Tensor:
25
+ """Get just the values of `input` which are at `indices`.
26
+
27
+ Arguments:
28
+ ctx: the autograd context object
29
+ input: (b, ...) 2+ dimensional tensor
30
+ indices: (num_idx) 1D tensor
31
+ """
32
+ ctx.save_for_backward(indices)
33
+ assert input.ndim >= 2
34
+ ctx.first_axis_dim, other_shape = input.shape[0], input.shape[
35
+ 1:] # type: ignore
36
+ second_dim = other_shape.numel(
37
+ ) # product of sizes of all but first dimension
38
+ # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
39
+ return torch.gather(
40
+ rearrange(input, 'b ... -> b (...)'), # (b, ...) -> (b, second_dim)
41
+ 0,
42
+ repeat(indices, 'z -> z d',
43
+ d=second_dim) # (indices,) -> (indices, second_dim)
44
+ ).reshape(-1, *other_shape) # (num_idx, ...)
45
+
46
+ @staticmethod
47
+ def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None]:
48
+ indices, = ctx.saved_tensors
49
+ assert grad_output.ndim >= 2
50
+ other_shape = grad_output.shape[1:]
51
+ grad_output = rearrange(grad_output, 'b ... -> b (...)')
52
+ grad_input = torch.zeros([ctx.first_axis_dim, grad_output.shape[1]],
53
+ device=grad_output.device,
54
+ dtype=grad_output.dtype)
55
+ # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
56
+ # grad_input[indices] = grad_output
57
+ grad_input.scatter_(0,
58
+ repeat(indices, 'z -> z d', d=grad_output.shape[1]),
59
+ grad_output)
60
+ return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
61
+
62
+
63
+ index_first_axis = IndexFirstAxis.apply
64
+
65
+
66
+ class IndexPutFirstAxis(torch.autograd.Function):
67
+
68
+ @staticmethod
69
+ def forward(ctx, values: torch.Tensor, indices: torch.Tensor,
70
+ first_axis_dim) -> torch.Tensor:
71
+ ctx.save_for_backward(indices)
72
+ assert indices.ndim == 1
73
+ assert values.ndim >= 2
74
+ output = torch.zeros(first_axis_dim,
75
+ *values.shape[1:],
76
+ device=values.device,
77
+ dtype=values.dtype)
78
+ output[indices] = values
79
+ return output
80
+
81
+ @staticmethod
82
+ def backward(ctx,
83
+ grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
84
+ indices, = ctx.saved_tensors
85
+ grad_values = grad_output[indices]
86
+ return grad_values, None, None
87
+
88
+
89
+ index_put_first_axis = IndexPutFirstAxis.apply
90
+
91
+
92
+ def unpad_input(
93
+ hidden_states: torch.Tensor,
94
+ attention_mask: torch.Tensor,
95
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
96
+ """Remove padding from input sequences.
97
+
98
+ Arguments:
99
+ hidden_states: (batch, seqlen, ...)
100
+ attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
101
+
102
+ Returns:
103
+ hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
104
+ indices: (total_nnz)
105
+ cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
106
+ max_seqlen_in_batch: int ()
107
+ """
108
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
109
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
110
+ max_seqlen_in_batch = int(seqlens_in_batch.max().item())
111
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32),
112
+ (1, 0))
113
+ # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
114
+ # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
115
+ # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
116
+ # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
117
+ # so we write custom forward and backward to make it a bit faster.
118
+ hidden_states = cast(
119
+ torch.Tensor,
120
+ index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'),
121
+ indices))
122
+ return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
123
+
124
+
125
+ def unpad_input_only(
126
+ hidden_states: torch.Tensor,
127
+ attention_mask: torch.Tensor,
128
+ ) -> torch.Tensor:
129
+ """Like unpad_input, but only return the unpadded first tensor.
130
+
131
+ Save a small amount of overhead.
132
+
133
+ Arguments:
134
+ hidden_states: (batch, seqlen, ...)
135
+ attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
136
+
137
+ Returns:
138
+ hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
139
+ """
140
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
141
+ rearranged = rearrange(hidden_states, 'b s ... -> (b s) ...')
142
+ return index_first_axis(rearranged, indices) # type: ignore
143
+
144
+
145
+ def pad_input(hidden_states: torch.Tensor, indices: torch.Tensor, batch: int,
146
+ seqlen: int) -> torch.Tensor:
147
+ """Add padding to sequences.
148
+
149
+ Arguments:
150
+ hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
151
+ indices: (total_nnz)
152
+ batch: int batch_size
153
+ seqlen: int max sequence length
154
+
155
+ Returns:
156
+ hidden_states: (batch, seqlen, ...)
157
+ """
158
+ output = index_put_first_axis(hidden_states, indices, batch * seqlen)
159
+ return rearrange(output, '(b s) ... -> b s ...', b=batch) # type: ignore
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aisingapore/sealion-bert-base",
3
+ "alibi_starting_size": 512,
4
+ "architectures": [
5
+ "BertForMaskedLM"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bert.BertConfig",
10
+ "AutoModelForMaskedLM": "bert_layers.BertForMaskedLM"
11
+ },
12
+ "classifier_dropout": null,
13
+ "gradient_checkpointing": false,
14
+ "hidden_act": "gelu",
15
+ "hidden_dropout_prob": 0.1,
16
+ "hidden_size": 768,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "transformers_version": "4.31.0",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 256000
30
+ }
configuration_bert.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 MosaicML Examples authors
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ from transformers import BertConfig as TransformersBertConfig
5
+
6
+
7
+ class BertConfig(TransformersBertConfig):
8
+ def __init__(
9
+ self,
10
+ alibi_starting_size: int = 512,
11
+ attention_probs_dropout_prob: float = 0.0,
12
+ **kwargs,
13
+ ):
14
+ """Configuration class for MosaicBert.
15
+
16
+ Args:
17
+ alibi_starting_size (int): Use `alibi_starting_size` to determine how large of an alibi tensor to
18
+ create when initializing the model. You should be able to ignore this parameter in most cases.
19
+ Defaults to 512.
20
+ attention_probs_dropout_prob (float): By default, turn off attention dropout in Mosaic BERT
21
+ (otherwise, Flash Attention will be off by default). Defaults to 0.0.
22
+ """
23
+ super().__init__(
24
+ attention_probs_dropout_prob=attention_probs_dropout_prob, **kwargs)
25
+ self.alibi_starting_size = alibi_starting_size
flash_attn_triton.py ADDED
@@ -0,0 +1,1114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 MosaicML Examples authors
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ """Triton implementation of Flash Attention.
5
+
6
+ # Copyright (c) 2022, Tri Dao.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+
20
+ *Experimental* implementation of FlashAttention in Triton.
21
+ We use the FlashAttention implementation from Phil Tillet a starting point.
22
+ https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
23
+
24
+ Changes:
25
+ - Implement both causal and non-causal attention.
26
+ - Implement both self-attention and cross-attention.
27
+ - Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
28
+ - Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
29
+ - Support attention bias.
30
+ - Speed up the forward pass a bit, and only store the LSE instead of m and l.
31
+ - Make the backward for d=128 much faster by reducing register spilling.
32
+ - Optionally parallelize the backward pass across seqlen_k, to deal with the case of
33
+ small batch size * nheads.
34
+
35
+ Caution:
36
+ - If you plan to use headdim other than 64 and 128, you should test for race conditions
37
+ (due to the Triton compiler), as done in tests/test_flash_attn.py
38
+ "test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
39
+ for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
40
+ that there are none left for other head dimensions.
41
+ Differences between this Triton version and the CUDA version:
42
+ - Triton version doesn't support dropout.
43
+ - Triton forward is generally faster than CUDA forward.
44
+ - Triton backward is faster than CUDA backward when batch * nheads is small, and when headdim=64.
45
+ It is slightly slower when headdim=128 and batch * nheads is large.
46
+ - Triton version doesn't yet support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
47
+ """
48
+
49
+ import math
50
+
51
+ import torch
52
+ # import triton # type: ignore (reportMissingImports)
53
+ # import triton.language as tl # type: ignore (reportMissingImports)
54
+ from einops import repeat
55
+
56
+ import triton_pre_mlir as triton
57
+ import triton_pre_mlir.language as tl
58
+
59
+ @triton.autotune(
60
+ configs=[
61
+ triton.Config({
62
+ 'BLOCK_M': 128,
63
+ 'BLOCK_N': 128
64
+ },
65
+ num_warps=8,
66
+ num_stages=1),
67
+ # This config has a race condition when EVEN_M == False, disabling it for now.
68
+ # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
69
+ ],
70
+ key=[
71
+ 'CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL',
72
+ 'BLOCK_HEADDIM'
73
+ ])
74
+ @triton.heuristics({
75
+ 'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0,
76
+ 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0,
77
+ 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM'],
78
+ })
79
+ @triton.jit
80
+ def _fwd_kernel(
81
+ Q,
82
+ K,
83
+ V,
84
+ Bias,
85
+ Out,
86
+ Lse,
87
+ TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
88
+ softmax_scale,
89
+ stride_qb,
90
+ stride_qh,
91
+ stride_qm,
92
+ stride_kb,
93
+ stride_kh,
94
+ stride_kn,
95
+ stride_vb,
96
+ stride_vh,
97
+ stride_vn,
98
+ stride_bb,
99
+ stride_bh,
100
+ stride_bm,
101
+ stride_ob,
102
+ stride_oh,
103
+ stride_om,
104
+ nheads,
105
+ seqlen_q,
106
+ seqlen_k,
107
+ seqlen_q_rounded,
108
+ headdim,
109
+ CACHE_KEY_SEQLEN_Q,
110
+ CACHE_KEY_SEQLEN_K,
111
+ BIAS_TYPE: tl.constexpr,
112
+ IS_CAUSAL: tl.constexpr,
113
+ BLOCK_HEADDIM: tl.constexpr,
114
+ EVEN_M: tl.constexpr,
115
+ EVEN_N: tl.constexpr,
116
+ EVEN_HEADDIM: tl.constexpr,
117
+ BLOCK_M: tl.constexpr,
118
+ BLOCK_N: tl.constexpr,
119
+ ):
120
+ start_m = tl.program_id(0)
121
+ off_hb = tl.program_id(1)
122
+ off_b = off_hb // nheads
123
+ off_h = off_hb % nheads
124
+ # off_b = tl.program_id(1)
125
+ # off_h = tl.program_id(2)
126
+ # off_hb = off_b * nheads + off_h
127
+ # initialize offsets
128
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
129
+ offs_n = tl.arange(0, BLOCK_N)
130
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
131
+ # Initialize pointers to Q, K, V
132
+ # Adding parenthesis around indexing might use int32 math instead of int64 math?
133
+ # https://github.com/openai/triton/issues/741
134
+ # I'm seeing a tiny bit of difference (5-7us)
135
+ q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (
136
+ offs_m[:, None] * stride_qm + offs_d[None, :])
137
+ k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (
138
+ offs_n[:, None] * stride_kn + offs_d[None, :])
139
+ v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (
140
+ offs_n[:, None] * stride_vn + offs_d[None, :])
141
+ if BIAS_TYPE == 'vector':
142
+ b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
143
+ elif BIAS_TYPE == 'matrix':
144
+ b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (
145
+ offs_m[:, None] * stride_bm + offs_n[None, :])
146
+ else:
147
+ raise ValueError("BIAS_TYPE must be one of {'vector', 'matrix'}")
148
+ # initialize pointer to m and l
149
+ t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
150
+ lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
151
+ m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
152
+ acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
153
+ # load q: it will stay in SRAM throughout
154
+ # [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
155
+ # tl.load(q_ptrs), we get the wrong output!
156
+ if EVEN_M & EVEN_N:
157
+ if EVEN_HEADDIM:
158
+ q = tl.load(q_ptrs)
159
+ else:
160
+ q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
161
+ else:
162
+ if EVEN_HEADDIM:
163
+ q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
164
+ else:
165
+ q = tl.load(q_ptrs,
166
+ mask=(offs_m[:, None] < seqlen_q) &
167
+ (offs_d[None, :] < headdim),
168
+ other=0.0)
169
+ # loop over k, v and update accumulator
170
+ end_n = seqlen_k if not IS_CAUSAL else tl.minimum(
171
+ (start_m + 1) * BLOCK_M, seqlen_k)
172
+ for start_n in range(0, end_n, BLOCK_N):
173
+ start_n = tl.multiple_of(start_n, BLOCK_N)
174
+ # -- compute qk ----
175
+ if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
176
+ if EVEN_HEADDIM:
177
+ k = tl.load(k_ptrs + start_n * stride_kn)
178
+ else:
179
+ k = tl.load(k_ptrs + start_n * stride_kn,
180
+ mask=offs_d[None, :] < headdim,
181
+ other=0.0)
182
+ else:
183
+ if EVEN_HEADDIM:
184
+ k = tl.load(k_ptrs + start_n * stride_kn,
185
+ mask=(start_n + offs_n)[:, None] < seqlen_k,
186
+ other=0.0)
187
+ else:
188
+ k = tl.load(k_ptrs + start_n * stride_kn,
189
+ mask=((start_n + offs_n)[:, None] < seqlen_k) &
190
+ (offs_d[None, :] < headdim),
191
+ other=0.0)
192
+ qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
193
+ qk += tl.dot(q, k, trans_b=True)
194
+ # Trying to combine the two masks seem to make the result wrong
195
+ if not EVEN_N: # Need to mask out otherwise the softmax is wrong
196
+ qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0,
197
+ float('-inf'))
198
+ if IS_CAUSAL:
199
+ qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0,
200
+ float('-inf'))
201
+ if BIAS_TYPE != 'none':
202
+ if BIAS_TYPE == 'vector':
203
+ if EVEN_N:
204
+ bias = tl.load(b_ptrs + start_n).to(tl.float32)
205
+ else:
206
+ bias = tl.load(b_ptrs + start_n,
207
+ mask=(start_n + offs_n) < seqlen_k,
208
+ other=0.0).to(tl.float32)
209
+ bias = bias[None, :]
210
+ elif BIAS_TYPE == 'matrix':
211
+ if EVEN_M & EVEN_N:
212
+ bias = tl.load(b_ptrs + start_n).to(tl.float32)
213
+ else:
214
+ bias = tl.load(b_ptrs + start_n,
215
+ mask=(offs_m[:, None] < seqlen_q) &
216
+ ((start_n + offs_n)[None, :] < seqlen_k),
217
+ other=0.0).to(tl.float32)
218
+ else:
219
+ raise ValueError(
220
+ "BIAS_TYPE must be one of {'vector', 'matrix'}")
221
+ # Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
222
+ # can then fuse the mult and add into an fma instruction. But if we have bias we need to
223
+ # to multiply with softmax_scale here.
224
+ qk = qk * softmax_scale + bias
225
+ m_ij = tl.maximum(tl.max(qk, 1), lse_i)
226
+ p = tl.exp(qk - m_ij[:, None])
227
+ else:
228
+ m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
229
+ p = tl.exp(qk * softmax_scale - m_ij[:, None])
230
+ l_ij = tl.sum(p, 1)
231
+
232
+ # scale acc_o
233
+ acc_o_scale = tl.exp(m_i - m_ij)
234
+
235
+ # # -- update output accumulator --
236
+ # BUG: have to store and immediately load
237
+ tl.store(t_ptrs, acc_o_scale)
238
+ acc_o_scale = tl.load(t_ptrs)
239
+ acc_o = acc_o * acc_o_scale[:, None]
240
+ # update acc_o
241
+ if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
242
+ if EVEN_HEADDIM:
243
+ v = tl.load(v_ptrs + start_n * stride_vn)
244
+ else:
245
+ v = tl.load(v_ptrs + start_n * stride_vn,
246
+ mask=offs_d[None, :] < headdim,
247
+ other=0.0)
248
+ else:
249
+ if EVEN_HEADDIM:
250
+ v = tl.load(v_ptrs + start_n * stride_vn,
251
+ mask=(start_n + offs_n)[:, None] < seqlen_k,
252
+ other=0.0)
253
+ else:
254
+ v = tl.load(v_ptrs + start_n * stride_vn,
255
+ mask=((start_n + offs_n)[:, None] < seqlen_k) &
256
+ (offs_d[None, :] < headdim),
257
+ other=0.0)
258
+ p = p.to(v.dtype)
259
+ acc_o += tl.dot(p, v)
260
+
261
+ # -- update statistics
262
+ m_i = m_ij
263
+ l_i_new = tl.exp(lse_i - m_ij) + l_ij
264
+ lse_i = m_ij + tl.log(l_i_new)
265
+
266
+ o_scale = tl.exp(m_i - lse_i)
267
+ # BUG: have to store and immediately load
268
+ tl.store(t_ptrs, o_scale)
269
+ o_scale = tl.load(t_ptrs)
270
+ acc_o = acc_o * o_scale[:, None]
271
+ # rematerialize offsets to save registers
272
+ start_m = tl.program_id(0)
273
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
274
+ # write back l and m
275
+ lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
276
+ tl.store(lse_ptrs, lse_i)
277
+ # initialize pointers to output
278
+ offs_n = tl.arange(0, BLOCK_HEADDIM)
279
+ out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (
280
+ offs_m[:, None] * stride_om + offs_n[None, :])
281
+ if EVEN_M:
282
+ if EVEN_HEADDIM:
283
+ tl.store(out_ptrs, acc_o)
284
+ else:
285
+ tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
286
+ else:
287
+ if EVEN_HEADDIM:
288
+ tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
289
+ else:
290
+ tl.store(out_ptrs,
291
+ acc_o,
292
+ mask=(offs_m[:, None] < seqlen_q) &
293
+ (offs_d[None, :] < headdim))
294
+
295
+
296
+ @triton.jit
297
+ def _bwd_preprocess_do_o_dot(
298
+ Out,
299
+ DO,
300
+ Delta,
301
+ stride_ob,
302
+ stride_oh,
303
+ stride_om,
304
+ stride_dob,
305
+ stride_doh,
306
+ stride_dom,
307
+ nheads,
308
+ seqlen_q,
309
+ seqlen_q_rounded,
310
+ headdim,
311
+ BLOCK_M: tl.constexpr,
312
+ BLOCK_HEADDIM: tl.constexpr,
313
+ ):
314
+ start_m = tl.program_id(0)
315
+ off_hb = tl.program_id(1)
316
+ off_b = off_hb // nheads
317
+ off_h = off_hb % nheads
318
+ # initialize offsets
319
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
320
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
321
+ # load
322
+ o = tl.load(Out + off_b * stride_ob + off_h * stride_oh +
323
+ offs_m[:, None] * stride_om + offs_d[None, :],
324
+ mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
325
+ other=0.0).to(tl.float32)
326
+ do = tl.load(DO + off_b * stride_dob + off_h * stride_doh +
327
+ offs_m[:, None] * stride_dom + offs_d[None, :],
328
+ mask=(offs_m[:, None] < seqlen_q) &
329
+ (offs_d[None, :] < headdim),
330
+ other=0.0).to(tl.float32)
331
+ delta = tl.sum(o * do, axis=1)
332
+ # write-back
333
+ tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
334
+
335
+
336
+ @triton.jit
337
+ def _bwd_kernel_one_col_block(
338
+ start_n,
339
+ Q,
340
+ K,
341
+ V,
342
+ Bias,
343
+ DO,
344
+ DQ,
345
+ DK,
346
+ DV,
347
+ LSE,
348
+ D,
349
+ softmax_scale,
350
+ stride_qm,
351
+ stride_kn,
352
+ stride_vn,
353
+ stride_bm,
354
+ stride_dom,
355
+ stride_dqm,
356
+ stride_dkn,
357
+ stride_dvn,
358
+ seqlen_q,
359
+ seqlen_k,
360
+ headdim,
361
+ ATOMIC_ADD: tl.constexpr,
362
+ BIAS_TYPE: tl.constexpr,
363
+ IS_CAUSAL: tl.constexpr,
364
+ BLOCK_HEADDIM: tl.constexpr,
365
+ EVEN_M: tl.constexpr,
366
+ EVEN_N: tl.constexpr,
367
+ EVEN_HEADDIM: tl.constexpr,
368
+ BLOCK_M: tl.constexpr,
369
+ BLOCK_N: tl.constexpr,
370
+ ):
371
+ # We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
372
+ begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
373
+ # initialize row/col offsets
374
+ offs_qm = begin_m + tl.arange(0, BLOCK_M)
375
+ offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
376
+ offs_m = tl.arange(0, BLOCK_M)
377
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
378
+ # initialize pointers to value-like data
379
+ q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
380
+ k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
381
+ v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
382
+ do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
383
+ dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
384
+ if BIAS_TYPE == 'vector':
385
+ b_ptrs = Bias + offs_n
386
+ elif BIAS_TYPE == 'matrix':
387
+ b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
388
+ else:
389
+ raise ValueError("BIAS_TYPE must be one of {'vector', 'matrix'}")
390
+ # initialize dv and dk
391
+ dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
392
+ dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
393
+ # k and v stay in SRAM throughout
394
+ # [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
395
+ # if we just call tl.load(k_ptrs), we get the wrong output!
396
+ if EVEN_N & EVEN_M:
397
+ if EVEN_HEADDIM:
398
+ k = tl.load(k_ptrs)
399
+ v = tl.load(v_ptrs)
400
+ else:
401
+ k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
402
+ v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
403
+ else:
404
+ if EVEN_HEADDIM:
405
+ k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
406
+ v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
407
+ else:
408
+ k = tl.load(k_ptrs,
409
+ mask=(offs_n[:, None] < seqlen_k) &
410
+ (offs_d[None, :] < headdim),
411
+ other=0.0)
412
+ v = tl.load(v_ptrs,
413
+ mask=(offs_n[:, None] < seqlen_k) &
414
+ (offs_d[None, :] < headdim),
415
+ other=0.0)
416
+ # loop over rows
417
+ num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
418
+ for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
419
+ start_m = tl.multiple_of(start_m, BLOCK_M)
420
+ offs_m_curr = start_m + offs_m
421
+ # load q, k, v, do on-chip
422
+ # Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117)
423
+ if EVEN_M & EVEN_HEADDIM:
424
+ q = tl.load(q_ptrs)
425
+ else:
426
+ if EVEN_HEADDIM:
427
+ q = tl.load(q_ptrs,
428
+ mask=offs_m_curr[:, None] < seqlen_q,
429
+ other=0.0)
430
+ else:
431
+ q = tl.load(q_ptrs,
432
+ mask=(offs_m_curr[:, None] < seqlen_q) &
433
+ (offs_d[None, :] < headdim),
434
+ other=0.0)
435
+ # recompute p = softmax(qk, dim=-1).T
436
+ qk = tl.dot(q, k, trans_b=True)
437
+ # Trying to combine the two masks seem to make the result wrong
438
+ if not EVEN_N: # Need to mask out otherwise the softmax is wrong
439
+ qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf'))
440
+ if IS_CAUSAL:
441
+ qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk,
442
+ float('-inf'))
443
+ if BIAS_TYPE != 'none':
444
+ if BIAS_TYPE == 'vector':
445
+ if EVEN_N:
446
+ bias = tl.load(b_ptrs).to(tl.float32)
447
+ else:
448
+ bias = tl.load(b_ptrs, mask=offs_n < seqlen_k,
449
+ other=0.0).to(tl.float32)
450
+ bias = bias[None, :]
451
+ elif BIAS_TYPE == 'matrix':
452
+ if EVEN_M & EVEN_N:
453
+ bias = tl.load(b_ptrs).to(tl.float32)
454
+ else:
455
+ bias = tl.load(b_ptrs,
456
+ mask=(offs_m_curr[:, None] < seqlen_q) &
457
+ (offs_n[None, :] < seqlen_k),
458
+ other=0.0).to(tl.float32)
459
+ else:
460
+ raise ValueError(
461
+ "BIAS_TYPE must be one of {'vector', 'matrix'}")
462
+ qk = qk * softmax_scale + bias
463
+ # There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong.
464
+ # Also wrong for headdim=64.
465
+ if not (EVEN_M & EVEN_HEADDIM):
466
+ tl.debug_barrier()
467
+ lse_i = tl.load(LSE + offs_m_curr)
468
+ if BIAS_TYPE == 'none':
469
+ p = tl.exp(qk * softmax_scale - lse_i[:, None])
470
+ else:
471
+ p = tl.exp(qk - lse_i[:, None])
472
+ # compute dv
473
+ # [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call
474
+ # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs
475
+ # in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512,
476
+ # the output is correct.
477
+ if EVEN_M & EVEN_HEADDIM:
478
+ do = tl.load(do_ptrs)
479
+ else:
480
+ # [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask.
481
+ do = tl.load(do_ptrs,
482
+ mask=(offs_m_curr[:, None] < seqlen_q) &
483
+ (offs_d[None, :] < headdim),
484
+ other=0.0)
485
+ # if EVEN_M:
486
+ # if EVEN_HEADDIM:
487
+ # do = tl.load(do_ptrs)
488
+ # else:
489
+ # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
490
+ # else:
491
+ # if EVEN_HEADDIM:
492
+ # do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
493
+ # else:
494
+ # do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
495
+ # & (offs_d[None, :] < headdim), other=0.0)
496
+ dv += tl.dot(p.to(do.dtype), do, trans_a=True)
497
+ # compute dp = dot(v, do)
498
+ # There seems to be a race condition when headdim=48/96, and dq, dk are wrong.
499
+ # Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True
500
+ # Also wrong for headdim=64, seqlen=(1023, 1024), and ATOMIC_ADD=False
501
+ if not (EVEN_M & EVEN_HEADDIM):
502
+ tl.debug_barrier()
503
+ dp = tl.dot(do, v, trans_b=True)
504
+ # There's a race condition for headdim=48
505
+ if not EVEN_HEADDIM:
506
+ tl.debug_barrier()
507
+ # compute ds = p * (dp - delta[:, None])
508
+ # Putting the subtraction after the dp matmul (instead of before) is slightly faster
509
+ Di = tl.load(D + offs_m_curr)
510
+ # Converting ds to q.dtype here reduces register pressure and makes it much faster
511
+ # for BLOCK_HEADDIM=128
512
+ ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
513
+ # compute dk = dot(ds.T, q)
514
+ dk += tl.dot(ds, q, trans_a=True)
515
+ # compute dq
516
+ if not ATOMIC_ADD:
517
+ if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
518
+ dq = tl.load(dq_ptrs, eviction_policy='evict_last')
519
+ dq += tl.dot(ds, k)
520
+ tl.store(dq_ptrs, dq, eviction_policy='evict_last')
521
+ else:
522
+ if EVEN_HEADDIM:
523
+ dq = tl.load(dq_ptrs,
524
+ mask=offs_m_curr[:, None] < seqlen_q,
525
+ other=0.0,
526
+ eviction_policy='evict_last')
527
+ dq += tl.dot(ds, k)
528
+ tl.store(dq_ptrs,
529
+ dq,
530
+ mask=offs_m_curr[:, None] < seqlen_q,
531
+ eviction_policy='evict_last')
532
+ else:
533
+ dq = tl.load(dq_ptrs,
534
+ mask=(offs_m_curr[:, None] < seqlen_q) &
535
+ (offs_d[None, :] < headdim),
536
+ other=0.0,
537
+ eviction_policy='evict_last')
538
+ dq += tl.dot(ds, k)
539
+ tl.store(dq_ptrs,
540
+ dq,
541
+ mask=(offs_m_curr[:, None] < seqlen_q) &
542
+ (offs_d[None, :] < headdim),
543
+ eviction_policy='evict_last')
544
+ else: # If we're parallelizing across the seqlen_k dimension
545
+ dq = tl.dot(ds, k)
546
+ if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
547
+ tl.atomic_add(dq_ptrs, dq)
548
+ else:
549
+ if EVEN_HEADDIM:
550
+ tl.atomic_add(dq_ptrs,
551
+ dq,
552
+ mask=offs_m_curr[:, None] < seqlen_q)
553
+ else:
554
+ tl.atomic_add(dq_ptrs,
555
+ dq,
556
+ mask=(offs_m_curr[:, None] < seqlen_q) &
557
+ (offs_d[None, :] < headdim))
558
+ # increment pointers
559
+ dq_ptrs += BLOCK_M * stride_dqm
560
+ q_ptrs += BLOCK_M * stride_qm
561
+ do_ptrs += BLOCK_M * stride_dom
562
+ if BIAS_TYPE == 'matrix':
563
+ b_ptrs += BLOCK_M * stride_bm
564
+ # write-back
565
+ dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
566
+ dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
567
+ # [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False,
568
+ # if we just call tl.store(dv_ptrs), there's a race condition
569
+ if EVEN_N & EVEN_M:
570
+ if EVEN_HEADDIM:
571
+ tl.store(dv_ptrs, dv)
572
+ tl.store(dk_ptrs, dk)
573
+ else:
574
+ tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
575
+ tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
576
+ else:
577
+ if EVEN_HEADDIM:
578
+ tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
579
+ tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
580
+ else:
581
+ tl.store(dv_ptrs,
582
+ dv,
583
+ mask=(offs_n[:, None] < seqlen_k) &
584
+ (offs_d[None, :] < headdim))
585
+ tl.store(dk_ptrs,
586
+ dk,
587
+ mask=(offs_n[:, None] < seqlen_k) &
588
+ (offs_d[None, :] < headdim))
589
+
590
+
591
+ def init_to_zero(name):
592
+ return lambda nargs: nargs[name].zero_()
593
+
594
+
595
+ @triton.autotune(
596
+ configs=[
597
+ triton.Config(
598
+ {
599
+ 'BLOCK_M': 128,
600
+ 'BLOCK_N': 128,
601
+ 'SEQUENCE_PARALLEL': False
602
+ },
603
+ num_warps=8,
604
+ num_stages=1,
605
+ pre_hook=init_to_zero('DQ')),
606
+ triton.Config(
607
+ {
608
+ 'BLOCK_M': 128,
609
+ 'BLOCK_N': 128,
610
+ 'SEQUENCE_PARALLEL': True
611
+ },
612
+ num_warps=8,
613
+ num_stages=1,
614
+ pre_hook=init_to_zero('DQ')),
615
+ # Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now
616
+ # # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
617
+ # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
618
+ # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
619
+ # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
620
+ # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
621
+ ],
622
+ key=[
623
+ 'CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL',
624
+ 'BLOCK_HEADDIM'
625
+ ],
626
+ )
627
+ @triton.heuristics({
628
+ 'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0,
629
+ 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0,
630
+ 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM'],
631
+ })
632
+ @triton.jit
633
+ def _bwd_kernel(
634
+ Q,
635
+ K,
636
+ V,
637
+ Bias,
638
+ DO,
639
+ DQ,
640
+ DK,
641
+ DV,
642
+ LSE,
643
+ D,
644
+ softmax_scale,
645
+ stride_qb,
646
+ stride_qh,
647
+ stride_qm,
648
+ stride_kb,
649
+ stride_kh,
650
+ stride_kn,
651
+ stride_vb,
652
+ stride_vh,
653
+ stride_vn,
654
+ stride_bb,
655
+ stride_bh,
656
+ stride_bm,
657
+ stride_dob,
658
+ stride_doh,
659
+ stride_dom,
660
+ stride_dqb,
661
+ stride_dqh,
662
+ stride_dqm,
663
+ stride_dkb,
664
+ stride_dkh,
665
+ stride_dkn,
666
+ stride_dvb,
667
+ stride_dvh,
668
+ stride_dvn,
669
+ nheads,
670
+ seqlen_q,
671
+ seqlen_k,
672
+ seqlen_q_rounded,
673
+ headdim,
674
+ CACHE_KEY_SEQLEN_Q,
675
+ CACHE_KEY_SEQLEN_K,
676
+ BIAS_TYPE: tl.constexpr,
677
+ IS_CAUSAL: tl.constexpr,
678
+ BLOCK_HEADDIM: tl.constexpr,
679
+ SEQUENCE_PARALLEL: tl.constexpr,
680
+ EVEN_M: tl.constexpr,
681
+ EVEN_N: tl.constexpr,
682
+ EVEN_HEADDIM: tl.constexpr,
683
+ BLOCK_M: tl.constexpr,
684
+ BLOCK_N: tl.constexpr,
685
+ ):
686
+ off_hb = tl.program_id(1)
687
+ off_b = off_hb // nheads
688
+ off_h = off_hb % nheads
689
+ # offset pointers for batch/head
690
+ Q += off_b * stride_qb + off_h * stride_qh
691
+ K += off_b * stride_kb + off_h * stride_kh
692
+ V += off_b * stride_vb + off_h * stride_vh
693
+ DO += off_b * stride_dob + off_h * stride_doh
694
+ DQ += off_b * stride_dqb + off_h * stride_dqh
695
+ DK += off_b * stride_dkb + off_h * stride_dkh
696
+ DV += off_b * stride_dvb + off_h * stride_dvh
697
+ if BIAS_TYPE != 'none':
698
+ Bias += off_b * stride_bb + off_h * stride_bh
699
+ # pointer to row-wise quantities in value-like data
700
+ D += off_hb * seqlen_q_rounded
701
+ LSE += off_hb * seqlen_q_rounded
702
+ if not SEQUENCE_PARALLEL:
703
+ num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
704
+ for start_n in range(0, num_block_n):
705
+ _bwd_kernel_one_col_block(start_n,
706
+ Q,
707
+ K,
708
+ V,
709
+ Bias,
710
+ DO,
711
+ DQ,
712
+ DK,
713
+ DV,
714
+ LSE,
715
+ D,
716
+ softmax_scale,
717
+ stride_qm,
718
+ stride_kn,
719
+ stride_vn,
720
+ stride_bm,
721
+ stride_dom,
722
+ stride_dqm,
723
+ stride_dkn,
724
+ stride_dvn,
725
+ seqlen_q,
726
+ seqlen_k,
727
+ headdim,
728
+ ATOMIC_ADD=False,
729
+ BIAS_TYPE=BIAS_TYPE,
730
+ IS_CAUSAL=IS_CAUSAL,
731
+ BLOCK_HEADDIM=BLOCK_HEADDIM,
732
+ EVEN_M=EVEN_M,
733
+ EVEN_N=EVEN_N,
734
+ EVEN_HEADDIM=EVEN_HEADDIM,
735
+ BLOCK_M=BLOCK_M,
736
+ BLOCK_N=BLOCK_N)
737
+ else:
738
+ start_n = tl.program_id(0)
739
+ _bwd_kernel_one_col_block(start_n,
740
+ Q,
741
+ K,
742
+ V,
743
+ Bias,
744
+ DO,
745
+ DQ,
746
+ DK,
747
+ DV,
748
+ LSE,
749
+ D,
750
+ softmax_scale,
751
+ stride_qm,
752
+ stride_kn,
753
+ stride_vn,
754
+ stride_bm,
755
+ stride_dom,
756
+ stride_dqm,
757
+ stride_dkn,
758
+ stride_dvn,
759
+ seqlen_q,
760
+ seqlen_k,
761
+ headdim,
762
+ ATOMIC_ADD=True,
763
+ BIAS_TYPE=BIAS_TYPE,
764
+ IS_CAUSAL=IS_CAUSAL,
765
+ BLOCK_HEADDIM=BLOCK_HEADDIM,
766
+ EVEN_M=EVEN_M,
767
+ EVEN_N=EVEN_N,
768
+ EVEN_HEADDIM=EVEN_HEADDIM,
769
+ BLOCK_M=BLOCK_M,
770
+ BLOCK_N=BLOCK_N)
771
+
772
+
773
+ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
774
+ # shape constraints
775
+ batch, seqlen_q, nheads, d = q.shape
776
+ _, seqlen_k, _, _ = k.shape
777
+ assert k.shape == (batch, seqlen_k, nheads, d)
778
+ assert v.shape == (batch, seqlen_k, nheads, d)
779
+ assert d <= 128, 'FlashAttention only support head dimensions up to 128'
780
+ assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
781
+ assert q.dtype in [torch.float16,
782
+ torch.bfloat16], 'Only support fp16 and bf16'
783
+ assert q.is_cuda and k.is_cuda and v.is_cuda
784
+ softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
785
+
786
+ has_bias = bias is not None
787
+ bias_type = 'none'
788
+ if has_bias:
789
+ assert bias.dtype in [q.dtype, torch.float]
790
+ assert bias.is_cuda
791
+ assert bias.dim() == 4
792
+ if bias.stride(-1) != 1:
793
+ bias = bias.contiguous()
794
+ if bias.shape[2:] == (1, seqlen_k):
795
+ bias_type = 'vector'
796
+ elif bias.shape[2:] == (seqlen_q, seqlen_k):
797
+ bias_type = 'matrix'
798
+ else:
799
+ raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
800
+ ' or (seqlen_q, seqlen_k)')
801
+ if bias.shape[:2] == (1, nheads):
802
+ bias = repeat(bias, '1 h ... -> b h ...', b=batch)
803
+ elif bias.shape[:2] == (batch, 1):
804
+ bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
805
+ elif bias.shape[:2] == (1, 1):
806
+ bias = repeat(bias, '1 h ... -> b h ...', b=batch)
807
+ bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
808
+ assert bias.shape[:2] == (
809
+ batch, nheads
810
+ ), f'First 2 dimensions of bias must be broadcastible to (batch, nheads) = ({batch, nheads}). Bias has shape: {bias.shape}'
811
+ assert bias is not None # for type checking
812
+ bias_strides = (bias.stride(0), bias.stride(1),
813
+ bias.stride(2)) if has_bias else (0, 0, 0)
814
+
815
+ seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
816
+ lse = torch.empty((batch, nheads, seqlen_q_rounded),
817
+ device=q.device,
818
+ dtype=torch.float32)
819
+ tmp = torch.empty((batch, nheads, seqlen_q_rounded),
820
+ device=q.device,
821
+ dtype=torch.float32)
822
+ o = torch.empty_like(q)
823
+
824
+ BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
825
+ # BLOCK = 128
826
+ # num_warps = 4 if d <= 64 else 8
827
+ grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
828
+ _fwd_kernel[grid]( # type: ignore
829
+ q,
830
+ k,
831
+ v,
832
+ bias,
833
+ o,
834
+ lse,
835
+ tmp,
836
+ softmax_scale,
837
+ q.stride(0),
838
+ q.stride(2),
839
+ q.stride(1),
840
+ k.stride(0),
841
+ k.stride(2),
842
+ k.stride(1),
843
+ v.stride(0),
844
+ v.stride(2),
845
+ v.stride(1),
846
+ *bias_strides,
847
+ o.stride(0),
848
+ o.stride(2),
849
+ o.stride(1),
850
+ nheads,
851
+ seqlen_q,
852
+ seqlen_k,
853
+ seqlen_q_rounded,
854
+ d,
855
+ seqlen_q // 32,
856
+ seqlen_k // 32, # key for triton cache (limit number of compilations)
857
+ # Can't use kwargs here because triton autotune expects key to be args, not kwargs
858
+ # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
859
+ bias_type,
860
+ causal,
861
+ BLOCK_HEADDIM,
862
+ # BLOCK_M=BLOCK, BLOCK_N=BLOCK,
863
+ # num_warps=num_warps,
864
+ # num_stages=1,
865
+ )
866
+ return o, lse, softmax_scale # softmax_scale could have been updated
867
+
868
+
869
+ def _flash_attn_backward(do,
870
+ q,
871
+ k,
872
+ v,
873
+ o,
874
+ lse,
875
+ dq,
876
+ dk,
877
+ dv,
878
+ bias=None,
879
+ causal=False,
880
+ softmax_scale=None):
881
+ # Make sure that the last dimension is contiguous
882
+ if do.stride(-1) != 1:
883
+ do = do.contiguous()
884
+ batch, seqlen_q, nheads, d = q.shape
885
+ _, seqlen_k, _, _ = k.shape
886
+ # assert d in {16, 32, 64, 128}
887
+ assert d <= 128
888
+ seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
889
+ assert lse.shape == (batch, nheads, seqlen_q_rounded)
890
+ assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
891
+ assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
892
+ softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
893
+ # dq_accum = torch.zeros_like(q, dtype=torch.float32)
894
+ dq_accum = torch.empty_like(q, dtype=torch.float32)
895
+ delta = torch.empty_like(lse)
896
+ # delta = torch.zeros_like(lse)
897
+
898
+ BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
899
+ grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
900
+ _bwd_preprocess_do_o_dot[grid]( # type: ignore
901
+ o,
902
+ do,
903
+ delta,
904
+ o.stride(0),
905
+ o.stride(2),
906
+ o.stride(1),
907
+ do.stride(0),
908
+ do.stride(2),
909
+ do.stride(1),
910
+ nheads,
911
+ seqlen_q,
912
+ seqlen_q_rounded,
913
+ d,
914
+ BLOCK_M=128,
915
+ BLOCK_HEADDIM=BLOCK_HEADDIM,
916
+ )
917
+
918
+ has_bias = bias is not None
919
+ bias_type = 'none'
920
+ if has_bias:
921
+ assert bias.dtype in [q.dtype, torch.float]
922
+ assert bias.is_cuda
923
+ assert bias.dim() == 4
924
+ assert bias.stride(-1) == 1
925
+ if bias.shape[2:] == (1, seqlen_k):
926
+ bias_type = 'vector'
927
+ elif bias.shape[2:] == (seqlen_q, seqlen_k):
928
+ bias_type = 'matrix'
929
+ else:
930
+ raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
931
+ ' or (seqlen_q, seqlen_k)')
932
+ if bias.shape[:2] == (1, nheads):
933
+ bias = repeat(bias, '1 h ... -> b h ...', b=batch)
934
+ elif bias.shape[:2] == (batch, 1):
935
+ bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
936
+ elif bias.shape[:2] == (1, 1):
937
+ bias = repeat(bias, '1 h ... -> b h ...', b=batch)
938
+ bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
939
+ assert bias.shape[:2] == (
940
+ batch, nheads
941
+ ), f'First 2 dimensions of bias must be broadcastible to (batch, nheads) = ({batch, nheads}). Bias has shape: {bias.shape}'
942
+ assert bias is not None # type checking
943
+ bias_strides = (bias.stride(0), bias.stride(1),
944
+ bias.stride(2)) if has_bias else (0, 0, 0)
945
+
946
+ # BLOCK_M = 128
947
+ # BLOCK_N = 64
948
+ # num_warps = 4
949
+ grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N'])
950
+ if META['SEQUENCE_PARALLEL'] else 1, batch * nheads)
951
+ _bwd_kernel[grid]( # type: ignore
952
+ q,
953
+ k,
954
+ v,
955
+ bias,
956
+ do,
957
+ dq_accum,
958
+ dk,
959
+ dv,
960
+ lse,
961
+ delta,
962
+ softmax_scale,
963
+ q.stride(0),
964
+ q.stride(2),
965
+ q.stride(1),
966
+ k.stride(0),
967
+ k.stride(2),
968
+ k.stride(1),
969
+ v.stride(0),
970
+ v.stride(2),
971
+ v.stride(1),
972
+ *bias_strides,
973
+ do.stride(0),
974
+ do.stride(2),
975
+ do.stride(1),
976
+ dq_accum.stride(0),
977
+ dq_accum.stride(2),
978
+ dq_accum.stride(1),
979
+ dk.stride(0),
980
+ dk.stride(2),
981
+ dk.stride(1),
982
+ dv.stride(0),
983
+ dv.stride(2),
984
+ dv.stride(1),
985
+ nheads,
986
+ seqlen_q,
987
+ seqlen_k,
988
+ seqlen_q_rounded,
989
+ d,
990
+ seqlen_q // 32,
991
+ seqlen_k // 32, # key for triton cache (limit number of compilations)
992
+ # Can't use kwargs here because triton autotune expects key to be args, not kwargs
993
+ # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
994
+ bias_type,
995
+ causal,
996
+ BLOCK_HEADDIM,
997
+ # SEQUENCE_PARALLEL=False,
998
+ # BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
999
+ # num_warps=num_warps,
1000
+ # num_stages=1,
1001
+ )
1002
+ dq.copy_(dq_accum)
1003
+
1004
+
1005
+ class _FlashAttnQKVPackedFunc(torch.autograd.Function):
1006
+
1007
+ @staticmethod
1008
+ def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
1009
+ """Forward pass for packed FlashAttention.
1010
+
1011
+ Args:
1012
+ ctx: autograd context
1013
+ qkv: (batch, seqlen, 3, nheads, headdim)
1014
+ bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
1015
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
1016
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
1017
+ causal (bool): whether to incorporate causal attention masking
1018
+ softmax_scale (float, optional): scale factor for softmax
1019
+ """
1020
+ # Make sure that the last dimension is contiguous
1021
+ if qkv.stride(-1) != 1:
1022
+ qkv = qkv.contiguous()
1023
+ o, lse, ctx.softmax_scale = _flash_attn_forward(
1024
+ qkv[:, :, 0],
1025
+ qkv[:, :, 1],
1026
+ qkv[:, :, 2],
1027
+ bias=bias,
1028
+ causal=causal,
1029
+ softmax_scale=softmax_scale)
1030
+ ctx.save_for_backward(qkv, o, lse, bias)
1031
+ ctx.causal = causal
1032
+ return o
1033
+
1034
+ @staticmethod
1035
+ def backward(ctx, do):
1036
+ qkv, o, lse, bias = ctx.saved_tensors
1037
+ assert not ctx.needs_input_grad[
1038
+ 1], 'FlashAttention does not support bias gradient yet'
1039
+ # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
1040
+ # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
1041
+ with torch.inference_mode():
1042
+ dqkv = torch.empty_like(qkv)
1043
+ _flash_attn_backward(do,
1044
+ qkv[:, :, 0],
1045
+ qkv[:, :, 1],
1046
+ qkv[:, :, 2],
1047
+ o,
1048
+ lse,
1049
+ dqkv[:, :, 0],
1050
+ dqkv[:, :, 1],
1051
+ dqkv[:, :, 2],
1052
+ bias=bias,
1053
+ causal=ctx.causal,
1054
+ softmax_scale=ctx.softmax_scale)
1055
+ return dqkv, None, None, None
1056
+
1057
+
1058
+ flash_attn_qkvpacked_func = _FlashAttnQKVPackedFunc.apply
1059
+
1060
+
1061
+ class _FlashAttnFunc(torch.autograd.Function):
1062
+
1063
+ @staticmethod
1064
+ def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
1065
+ """Forward pass for FlashAttention.
1066
+
1067
+ Args:
1068
+ ctx: autograd context
1069
+ q: (batch_size, seqlen_q, nheads, headdim)
1070
+ k: (batch_size, seqlen_k, nheads, headdim)
1071
+ v: (batch_size, seqlen_k, nheads, headdim)
1072
+ bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
1073
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
1074
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
1075
+ causal (bool): whether to incorporate causal attention masking
1076
+ softmax_scale (float, optional): scale factor for softmax
1077
+ """
1078
+ # Make sure that the last dimension is contiguous
1079
+ q, k, v = [
1080
+ x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]
1081
+ ]
1082
+ o, lse, ctx.softmax_scale = _flash_attn_forward(
1083
+ q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
1084
+ ctx.save_for_backward(q, k, v, o, lse, bias)
1085
+ ctx.causal = causal
1086
+ return o
1087
+
1088
+ @staticmethod
1089
+ def backward(ctx, do):
1090
+ q, k, v, o, lse, bias = ctx.saved_tensors
1091
+ assert not ctx.needs_input_grad[
1092
+ 3], 'FlashAttention does not support bias gradient yet'
1093
+ # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
1094
+ # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
1095
+ with torch.inference_mode():
1096
+ dq = torch.empty_like(q)
1097
+ dk = torch.empty_like(k)
1098
+ dv = torch.empty_like(v)
1099
+ _flash_attn_backward(do,
1100
+ q,
1101
+ k,
1102
+ v,
1103
+ o,
1104
+ lse,
1105
+ dq,
1106
+ dk,
1107
+ dv,
1108
+ bias=bias,
1109
+ causal=ctx.causal,
1110
+ softmax_scale=ctx.softmax_scale)
1111
+ return dq, dk, dv, None, None, None
1112
+
1113
+
1114
+ flash_attn_func = _FlashAttnFunc.apply
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbb1a038c13fd313a6afb560c853b4f5a85a1ea71375f5523072c8c29ded443d
3
+ size 1243213121
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|bos|>",
3
+ "eos_token": "<|eos|>",
4
+ "mask_token": "<|mask|>",
5
+ "pad_token": "<|pad|>",
6
+ "unk_token": "<|unk|>"
7
+ }
tokenization_SEA_BPE.py ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from shutil import copyfile
3
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
4
+ import sentencepiece as spm
5
+ from tokenizers import processors
6
+
7
+
8
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
9
+ from transformers.utils import logging
10
+
11
+ logger = logging.get_logger(__name__)
12
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
13
+ SPIECE_UNDERLINE = "▁"
14
+
15
+ class SEABPETokenizer(PreTrainedTokenizer):
16
+ """
17
+ Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
18
+ no padding token in the original model.
19
+
20
+ Args:
21
+ vocab_file (`str`):
22
+ Path to the vocabulary file.
23
+ legacy (`bool`, *optional*, defaults to `True`):
24
+ Whether or not the `legacy` behaviour of the tokenizer should be used. Legacy is before the merge of #24622
25
+ which includes fixes to properly handle tokens that appear after special tokens.
26
+ legacy means we are not modifying existing tokenizers without knowing. (And we need to manually update those core tokenizers)
27
+
28
+ A simple example:
29
+
30
+ - `legacy=True`:
31
+ ```python
32
+ >>> from transformers import T5Tokenizer
33
+
34
+ >>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=True)
35
+ >>> tokenizer.encode("Hello <extra_id_0>.")
36
+ [8774, 32099, 3, 5, 1]
37
+ ```
38
+ - `legacy=False`:
39
+ ```python
40
+ >>> from transformers import T5Tokenizer
41
+
42
+ >>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False)
43
+ >>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here
44
+ [8774, 32099, 5, 1]
45
+ ```
46
+ Checkout the pull request and the issue [here](https://github.com/huggingface/transformers/pull/24565) for
47
+ more details.
48
+
49
+ """
50
+
51
+ vocab_files_names = VOCAB_FILES_NAMES
52
+
53
+ def __init__(
54
+ self,
55
+ vocab_file,
56
+ unk_token='<|unk|>',
57
+ bos_token='<|bos|>',
58
+ eos_token='<|eos|>',
59
+ pad_token='<|pad|>',
60
+ mask_token='<|mask|>',
61
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
62
+ add_bos_token=False,
63
+ add_eos_token=False,
64
+ clean_up_tokenization_spaces=False,
65
+ legacy=None,
66
+ **kwargs,
67
+ ):
68
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=True, special=True) if isinstance(mask_token, str) else mask_token
69
+
70
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
71
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
72
+ self.sp_model.Load(vocab_file)
73
+
74
+ super().__init__(
75
+ bos_token=bos_token,
76
+ eos_token=eos_token,
77
+ unk_token=unk_token,
78
+ pad_token=pad_token,
79
+ mask_token=mask_token,
80
+ add_bos_token=add_bos_token,
81
+ add_eos_token=add_eos_token,
82
+ sp_model_kwargs=self.sp_model_kwargs,
83
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
84
+ legacy=legacy,
85
+ **kwargs,
86
+ )
87
+ if legacy is None:
88
+ logger.warning_once(
89
+ f"You are using the default legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to"
90
+ " read the related pull request available at https://github.com/huggingface/transformers/pull/24565, and set the legacy attribute accordingly."
91
+ )
92
+ legacy = True
93
+
94
+ self.legacy = legacy
95
+ self.vocab_file = vocab_file
96
+ self.add_bos_token = add_bos_token
97
+ self.add_eos_token = add_eos_token
98
+
99
+ def __getstate__(self):
100
+ state = self.__dict__.copy()
101
+ state["sp_model"] = None
102
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
103
+ return state
104
+
105
+ def __setstate__(self, d):
106
+ self.__dict__ = d
107
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
108
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
109
+
110
+ def build_inputs_with_special_tokens(
111
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
112
+ ) -> List[int]:
113
+ """
114
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
115
+ adding special tokens. An sequence has the following format:
116
+
117
+ - single sequence: `<|bos|> X <|eos|>`
118
+ - pair of sequences: `<|bos|> A <|eos|><|bos|> B <|eos|>`
119
+
120
+ Args:
121
+ token_ids_0 (`List[int]`):
122
+ List of IDs to which the special tokens will be added.
123
+ token_ids_1 (`List[int]`, *optional*):
124
+ Optional second list of IDs for sequence pairs.
125
+
126
+ Returns:
127
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
128
+ """
129
+
130
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
131
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
132
+
133
+ output = bos_token_id + token_ids_0 + eos_token_id
134
+
135
+ if token_ids_1 is not None:
136
+ output = output + bos_token_id + token_ids_1 + eos_token_id
137
+
138
+ return output
139
+
140
+ def get_special_tokens_mask(
141
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
142
+ ) -> List[int]:
143
+ """
144
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
145
+ special tokens using the tokenizer `prepare_for_model` method.
146
+
147
+ Args:
148
+ token_ids_0 (`List[int]`):
149
+ List of IDs.
150
+ token_ids_1 (`List[int]`, *optional*):
151
+ Optional second list of IDs for sequence pairs.
152
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
153
+ Whether or not the token list is already formatted with special tokens for the model.
154
+
155
+ Returns:
156
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
157
+ """
158
+
159
+ if already_has_special_tokens:
160
+ return super().get_special_tokens_mask(
161
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
162
+ )
163
+
164
+
165
+ if token_ids_1 is None:
166
+ return [1] + ([0] * len(token_ids_0)) + [1]
167
+
168
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
169
+
170
+ def create_token_type_ids_from_sequences(
171
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
172
+ ) -> List[int]:
173
+ """
174
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
175
+ pair mask has the following format:
176
+
177
+ ```
178
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
179
+ | first sequence | second sequence |
180
+ ```
181
+
182
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
183
+
184
+ Args:
185
+ token_ids_0 (`List[int]`):
186
+ List of IDs.
187
+ token_ids_1 (`List[int]`, *optional*):
188
+ Optional second list of IDs for sequence pairs.
189
+
190
+ Returns:
191
+ `List[int]`: List of zeros.
192
+
193
+ """
194
+
195
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
196
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
197
+
198
+ if token_ids_1 is None:
199
+ return len(bos_token_id + token_ids_0 + eos_token_id) * [0]
200
+ return len(bos_token_id + token_ids_0 + eos_token_id) * [0] + len(bos_token_id + token_ids_1 + eos_token_id) * [1]
201
+
202
+ @property
203
+ def vocab_size(self):
204
+ """Returns vocab size"""
205
+ return self.sp_model.get_piece_size()
206
+
207
+ def get_vocab(self):
208
+ """Returns vocab as a dict"""
209
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
210
+ vocab.update(self.added_tokens_encoder)
211
+ return vocab
212
+
213
+ def tokenize(self, text, **kwargs) -> List[str]:
214
+ if not self.legacy:
215
+ text = SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " ")
216
+ return super().tokenize(text, **kwargs)
217
+
218
+ def _tokenize(self, text):
219
+ """
220
+ Returns a tokenized string.
221
+
222
+ Since the sentencepiece internal model always adds a SPIECE_UNDERLINE, at the beginning of the provided text,
223
+ we need to remove it by hand when the current text is a subsequence. This happens whenever the `self.tokenize`
224
+ function is called with specials tokens: the input is split on the special tokens, and each subsequence is
225
+ passed to `_tokenize`. Thus if a subsequence did not start with a `" "` or SPIECE_UNDERLINE, we have to remove
226
+ the extra `SPIECE_UNDERLINE` prepended.
227
+ """
228
+ if not self.legacy:
229
+ is_first = text.startswith(SPIECE_UNDERLINE)
230
+ if is_first:
231
+ text = text[1:]
232
+ tokens = self.sp_model.encode(text, out_type=str)
233
+
234
+ if not self.legacy and not is_first and not text.startswith(" ") and tokens[0].startswith(SPIECE_UNDERLINE):
235
+ tokens = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:]
236
+
237
+ return tokens
238
+
239
+ def _convert_token_to_id(self, token):
240
+ """Converts a token (str) in an id using the vocab."""
241
+ return self.sp_model.piece_to_id(token)
242
+
243
+ def _convert_id_to_token(self, index):
244
+ """Converts an index (integer) in a token (str) using the vocab."""
245
+ token = self.sp_model.IdToPiece(index)
246
+ return token
247
+
248
+ def convert_tokens_to_string(self, tokens):
249
+ """Converts a sequence of tokens (string) in a single string."""
250
+ current_sub_tokens = []
251
+ out_string = ""
252
+ prev_is_special = False
253
+ for i, token in enumerate(tokens):
254
+ # make sure that special tokens are not decoded using sentencepiece model
255
+ if token in self.all_special_tokens:
256
+ if not prev_is_special and i != 0:
257
+ out_string += " "
258
+ out_string += self.sp_model.decode(current_sub_tokens) + token
259
+ prev_is_special = True
260
+ current_sub_tokens = []
261
+ else:
262
+ current_sub_tokens.append(token)
263
+ prev_is_special = False
264
+ out_string += self.sp_model.decode(current_sub_tokens)
265
+ return out_string
266
+
267
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
268
+ """
269
+ Save the vocabulary and special tokens file to a directory.
270
+
271
+ Args:
272
+ save_directory (`str`):
273
+ The directory in which to save the vocabulary.
274
+
275
+ Returns:
276
+ `Tuple(str)`: Paths to the files saved.
277
+ """
278
+ if not os.path.isdir(save_directory):
279
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
280
+ return
281
+ out_vocab_file = os.path.join(
282
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
283
+ )
284
+
285
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
286
+ copyfile(self.vocab_file, out_vocab_file)
287
+ elif not os.path.isfile(self.vocab_file):
288
+ with open(out_vocab_file, "wb") as fi:
289
+ content_spiece_model = self.sp_model.serialized_model_proto()
290
+ fi.write(content_spiece_model)
291
+
292
+ return (out_vocab_file,)
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:170a13cb9d99871ae000c2b45c6b9e5765ce0701cf2d027964e14d00d37e75e7
3
+ size 4843534
tokenizer_config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": true,
4
+ "auto_map": {
5
+ "AutoTokenizer": ["tokenization_SEA_BPE.SEABPETokenizer", null]
6
+ },
7
+ "bos_token": "<|bos|>",
8
+ "clean_up_tokenization_spaces": false,
9
+ "eos_token": "<|eos|>",
10
+ "legacy": true,
11
+ "mask_token": "<|mask|>",
12
+ "model_max_length": 1000000000000000019884624838656,
13
+ "pad_token": "<|pad|>",
14
+ "sp_model_kwargs": {},
15
+ "tokenizer_class": "SEABPETokenizer",
16
+ "unk_token": "<|unk|>"
17
+ }