RaymondAISG commited on
Commit
c6f2274
·
verified ·
1 Parent(s): adf17ad

Upload sea-lion-7b-gptq

Browse files
adapt_tokenizer.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+ from transformers import AutoTokenizer, PreTrainedTokenizerBase
3
+
4
+ NUM_SENTINEL_TOKENS: int = 100
5
+
6
+
7
+ def adapt_tokenizer_for_denoising(tokenizer: PreTrainedTokenizerBase) -> None:
8
+ """Adds sentinel tokens and padding token (if missing).
9
+
10
+ Expands the tokenizer vocabulary to include sentinel tokens
11
+ used in mixture-of-denoiser tasks as well as a padding token.
12
+
13
+ All added tokens are added as special tokens. No tokens are
14
+ added if sentinel tokens and padding token already exist.
15
+ """
16
+ sentinels_to_add = [f"<extra_id_{i}>" for i in range(NUM_SENTINEL_TOKENS)]
17
+ tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
18
+ if tokenizer.pad_token is None:
19
+ tokenizer.add_tokens("<pad>", special_tokens=True)
20
+ tokenizer.pad_token = "<pad>"
21
+ assert tokenizer.pad_token_id is not None
22
+ sentinels = "".join([f"<extra_id_{i}>" for i in range(NUM_SENTINEL_TOKENS)])
23
+ _sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids
24
+ tokenizer.sentinel_token_ids = _sentinel_token_ids
25
+
26
+
27
+ class AutoTokenizerForMOD(AutoTokenizer):
28
+ """AutoTokenizer + Adaptation for MOD.
29
+
30
+ A simple wrapper around AutoTokenizer to make instantiating
31
+ an MOD-adapted tokenizer a bit easier.
32
+
33
+ MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>),
34
+ a padding token, and a property to get the token ids of the
35
+ sentinel tokens.
36
+ """
37
+
38
+ @classmethod
39
+ def from_pretrained(cls, *args: Any, **kwargs: Any) -> PreTrainedTokenizerBase:
40
+ """See `AutoTokenizer.from_pretrained` docstring."""
41
+ tokenizer = super().from_pretrained(*args, **kwargs)
42
+ adapt_tokenizer_for_denoising(tokenizer)
43
+ return tokenizer
attention.py ADDED
@@ -0,0 +1,735 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Attention layers."""
2
+
3
+ import math
4
+ import warnings
5
+ from typing import Any, Optional
6
+ import torch
7
+ import torch.nn as nn
8
+ import transformers
9
+ from einops import rearrange
10
+ from packaging import version
11
+ from torch import nn
12
+ from .fc import FC_CLASS_REGISTRY
13
+ from .norm import NORM_CLASS_REGISTRY
14
+
15
+
16
+ def is_flash_v2_installed(v2_version: str = "2.0.0"):
17
+ assert version.parse(v2_version) >= version.parse("2.0.0")
18
+ try:
19
+ import flash_attn as flash_attn
20
+ except:
21
+ return False
22
+ return version.parse(flash_attn.__version__) >= version.parse(v2_version)
23
+
24
+
25
+ def is_flash_v1_installed():
26
+ try:
27
+ import flash_attn as flash_attn
28
+ except:
29
+ return False
30
+ return version.parse(flash_attn.__version__) < version.parse("2.0.0")
31
+
32
+
33
+ def is_transformers_version_gte(hf_version: str) -> bool:
34
+ return version.parse(transformers.__version__) >= version.parse(hf_version)
35
+
36
+
37
+ def check_alibi_support(attention_impl: str) -> bool:
38
+ return attention_impl != "flash" or is_flash_v2_installed(v2_version="v2.4.2")
39
+
40
+
41
+ if is_flash_v1_installed():
42
+ import transformers
43
+
44
+ transformers.utils.is_flash_attn_available = lambda: False
45
+ from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
46
+
47
+
48
+ def _reset_is_causal(
49
+ num_query_tokens: int, num_key_tokens: int, original_is_causal: bool
50
+ ) -> bool:
51
+ if original_is_causal and num_query_tokens != num_key_tokens:
52
+ if num_query_tokens != 1:
53
+ raise NotImplementedError(
54
+ "MPT does not support query and key with different number of tokens, unless number of query tokens is 1."
55
+ )
56
+ else:
57
+ return False
58
+ return original_is_causal
59
+
60
+
61
+ def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor:
62
+ """Perform repeat of kv heads along a particular dimension.
63
+
64
+ hidden.shape expected to be: (batch size, seq len, kv_n_heads, head_dim)
65
+ n_rep: amount of repetitions of kv_n_heads
66
+ Unlike torch.repeat_interleave, this function avoids allocating new memory.
67
+ """
68
+ if n_rep == 1:
69
+ return hidden
70
+ (b, s, kv_n_heads, d) = hidden.shape
71
+ hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
72
+ return hidden.reshape(b, s, kv_n_heads * n_rep, d)
73
+
74
+
75
+ def scaled_multihead_dot_product_attention(
76
+ query: torch.Tensor,
77
+ key: torch.Tensor,
78
+ value: torch.Tensor,
79
+ n_heads: int,
80
+ kv_n_heads: int,
81
+ past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
82
+ softmax_scale: Optional[float] = None,
83
+ attn_bias: Optional[torch.Tensor] = None,
84
+ key_padding_mask: Optional[torch.Tensor] = None,
85
+ is_causal: bool = False,
86
+ dropout_p: float = 0.0,
87
+ training: bool = False,
88
+ needs_weights: bool = False,
89
+ ) -> tuple[
90
+ torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]
91
+ ]:
92
+ q = rearrange(query, "b s (h d) -> b h s d", h=n_heads)
93
+ k = rearrange(key, "b s (h d) -> b h d s", h=kv_n_heads)
94
+ v = rearrange(value, "b s (h d) -> b h s d", h=kv_n_heads)
95
+ if past_key_value is not None:
96
+ if len(past_key_value) != 0:
97
+ k = torch.cat([past_key_value[0], k], dim=3)
98
+ v = torch.cat([past_key_value[1], v], dim=2)
99
+ past_key_value = (k, v)
100
+ (b, _, s_q, d) = q.shape
101
+ s_k = k.size(-1)
102
+ if kv_n_heads > 1 and kv_n_heads < n_heads:
103
+ k = repeat_kv_for_gqa(k.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
104
+ v = repeat_kv_for_gqa(v.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
105
+ if softmax_scale is None:
106
+ softmax_scale = 1 / math.sqrt(d)
107
+ attn_weight = q.matmul(k) * softmax_scale
108
+ if attn_bias is not None:
109
+ _s_q = max(0, attn_bias.size(2) - s_q)
110
+ _s_k = max(0, attn_bias.size(3) - s_k)
111
+ attn_bias = attn_bias[:, :, _s_q:, _s_k:]
112
+ if (
113
+ attn_bias.size(-1) != 1
114
+ and attn_bias.size(-1) != s_k
115
+ or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q)
116
+ ):
117
+ raise RuntimeError(
118
+ f"attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}."
119
+ )
120
+ attn_weight = attn_weight + attn_bias
121
+ min_val = torch.finfo(q.dtype).min
122
+ if key_padding_mask is not None:
123
+ if attn_bias is not None:
124
+ warnings.warn(
125
+ "Propagating key_padding_mask to the attention module "
126
+ + "and applying it within the attention module can cause "
127
+ + "unnecessary computation/memory usage. Consider integrating "
128
+ + "into attn_bias once and passing that to each attention "
129
+ + "module instead."
130
+ )
131
+ attn_weight = attn_weight.masked_fill(
132
+ ~key_padding_mask.view((b, 1, 1, s_k)), min_val
133
+ )
134
+ if is_causal and (not q.size(2) == 1):
135
+ s = max(s_q, s_k)
136
+ causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32)
137
+ causal_mask = causal_mask.tril()
138
+ causal_mask = causal_mask.to(torch.bool)
139
+ causal_mask = ~causal_mask
140
+ causal_mask = causal_mask[-s_q:, -s_k:]
141
+ attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
142
+ attn_weight = torch.softmax(attn_weight, dim=-1)
143
+ if dropout_p:
144
+ attn_weight = torch.nn.functional.dropout(
145
+ attn_weight, p=dropout_p, training=training, inplace=True
146
+ )
147
+ out = attn_weight.to(v.dtype).matmul(v)
148
+ out = rearrange(out, "b h s d -> b s (h d)")
149
+ if needs_weights:
150
+ return (out, attn_weight, past_key_value)
151
+ return (out, None, past_key_value)
152
+
153
+
154
+ def check_valid_inputs(
155
+ *tensors: torch.Tensor, valid_dtypes: Optional[list[torch.dtype]] = None
156
+ ):
157
+ if valid_dtypes is None:
158
+ valid_dtypes = [torch.float16, torch.bfloat16]
159
+ for tensor in tensors:
160
+ if tensor.dtype not in valid_dtypes:
161
+ raise TypeError(
162
+ f"tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}."
163
+ )
164
+ if not tensor.is_cuda:
165
+ raise TypeError(
166
+ f"Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r})."
167
+ )
168
+
169
+
170
+ def flash_attn_fn(
171
+ query: torch.Tensor,
172
+ key: torch.Tensor,
173
+ value: torch.Tensor,
174
+ n_heads: int,
175
+ kv_n_heads: int,
176
+ past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
177
+ softmax_scale: Optional[float] = None,
178
+ attn_bias: Optional[torch.Tensor] = None,
179
+ key_padding_mask: Optional[torch.Tensor] = None,
180
+ is_causal: bool = False,
181
+ dropout_p: float = 0.0,
182
+ training: bool = False,
183
+ needs_weights: bool = False,
184
+ multiquery: bool = False,
185
+ should_repeat_kv_for_gqa: Optional[bool] = True,
186
+ sliding_window_size: int = -1,
187
+ alibi_slopes: Optional[torch.Tensor] = None,
188
+ flash_attn_padding_info: Optional[dict[str, torch.Tensor]] = None,
189
+ ) -> tuple[
190
+ torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]
191
+ ]:
192
+ if key_padding_mask is not None:
193
+ raise ValueError("key_padding_mask should be None for flash attn.")
194
+ del key_padding_mask
195
+ if flash_attn_padding_info is None:
196
+ raise ValueError("flash_attn_padding_info is required for flash attn.")
197
+ try:
198
+ from flash_attn import bert_padding, flash_attn_interface
199
+ except:
200
+ raise RuntimeError("Please install flash-attn==1.0.9 or flash-attn==2.3.6")
201
+ check_valid_inputs(query, key, value)
202
+ if past_key_value is not None:
203
+ if len(past_key_value) != 0:
204
+ key = torch.cat([past_key_value[0], key], dim=1)
205
+ value = torch.cat([past_key_value[1], value], dim=1)
206
+ past_key_value = (key, value)
207
+ if attn_bias is not None:
208
+ raise NotImplementedError(f"attn_bias not implemented for flash attn.")
209
+ (batch_size, seqlen) = query.shape[:2]
210
+ indices_q = flash_attn_padding_info["indices_q"]
211
+ indices_k = flash_attn_padding_info["indices_k"]
212
+ indices_v = flash_attn_padding_info["indices_v"]
213
+ cu_seqlens_q = flash_attn_padding_info["cu_seqlens_q"]
214
+ cu_seqlens_k = flash_attn_padding_info["cu_seqlens_k"]
215
+ max_seqlen_q = flash_attn_padding_info["max_seqlen_q"]
216
+ max_seqlen_k = flash_attn_padding_info["max_seqlen_k"]
217
+ query_unpad = bert_padding.index_first_axis(
218
+ rearrange(query, "b s ... -> (b s) ..."), indices_q
219
+ )
220
+ query_unpad = rearrange(query_unpad, "nnz (h d) -> nnz h d", h=n_heads)
221
+ key_unpad = bert_padding.index_first_axis(
222
+ rearrange(key, "b s ... -> (b s) ..."), indices_k
223
+ )
224
+ key_unpad = rearrange(key_unpad, "nnz (h d) -> nnz h d", h=kv_n_heads)
225
+ value_unpad = bert_padding.index_first_axis(
226
+ rearrange(value, "b s ... -> (b s) ..."), indices_v
227
+ )
228
+ value_unpad = rearrange(value_unpad, "nnz (h d) -> nnz h d", h=kv_n_heads)
229
+ if (
230
+ kv_n_heads < n_heads
231
+ and (not is_flash_v2_installed())
232
+ and (not should_repeat_kv_for_gqa)
233
+ ):
234
+ raise ValueError(
235
+ "For Grouped Query Attention or Multi Query Attention, should_repeat_kv_for_gqa should be set to True if not using Flash Attention v2."
236
+ )
237
+ if should_repeat_kv_for_gqa:
238
+ if kv_n_heads == 1:
239
+ key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
240
+ value_unpad = value_unpad.expand(
241
+ value_unpad.size(0), n_heads, value_unpad.size(-1)
242
+ )
243
+ elif kv_n_heads < n_heads:
244
+ key_unpad = repeat_kv_for_gqa(
245
+ key_unpad.view(1, key_unpad.size(0), kv_n_heads, -1),
246
+ n_heads // kv_n_heads,
247
+ ).view(key_unpad.size(0), n_heads, -1)
248
+ value_unpad = repeat_kv_for_gqa(
249
+ value_unpad.view(1, value_unpad.size(0), kv_n_heads, -1),
250
+ n_heads // kv_n_heads,
251
+ ).view(value_unpad.size(0), n_heads, -1)
252
+ dropout_p = dropout_p if training else 0.0
253
+ reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
254
+ if is_flash_v1_installed():
255
+ output_unpad = flash_attn_interface.flash_attn_unpadded_func(
256
+ q=query_unpad,
257
+ k=key_unpad,
258
+ v=value_unpad,
259
+ cu_seqlens_q=cu_seqlens_q,
260
+ cu_seqlens_k=cu_seqlens_k,
261
+ max_seqlen_q=max_seqlen_q,
262
+ max_seqlen_k=max_seqlen_k,
263
+ dropout_p=dropout_p,
264
+ softmax_scale=softmax_scale,
265
+ causal=reset_is_causal,
266
+ return_attn_probs=needs_weights,
267
+ )
268
+ elif is_flash_v2_installed():
269
+ alibi_kwargs = {}
270
+ if check_alibi_support("flash"):
271
+ alibi_kwargs = {"alibi_slopes": alibi_slopes}
272
+ elif alibi_slopes is not None:
273
+ raise ValueError("alibi_slopes is only supported for flash-attn>=2.4.2")
274
+ output_unpad = flash_attn_interface.flash_attn_varlen_func(
275
+ q=query_unpad,
276
+ k=key_unpad,
277
+ v=value_unpad,
278
+ cu_seqlens_q=cu_seqlens_q,
279
+ cu_seqlens_k=cu_seqlens_k,
280
+ max_seqlen_q=max_seqlen_q,
281
+ max_seqlen_k=max_seqlen_k,
282
+ dropout_p=dropout_p,
283
+ softmax_scale=softmax_scale,
284
+ causal=reset_is_causal,
285
+ return_attn_probs=needs_weights,
286
+ window_size=(sliding_window_size, sliding_window_size),
287
+ **alibi_kwargs,
288
+ )
289
+ else:
290
+ raise RuntimeError("flash-attn==1.0.9 or flash-attn==2.4.2 is required.")
291
+ output = bert_padding.pad_input(
292
+ rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices_q, batch_size, seqlen
293
+ )
294
+ return (output, None, past_key_value)
295
+
296
+
297
+ def triton_flash_attn_fn(
298
+ query: torch.Tensor,
299
+ key: torch.Tensor,
300
+ value: torch.Tensor,
301
+ n_heads: int,
302
+ kv_n_heads: int,
303
+ past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
304
+ softmax_scale: Optional[float] = None,
305
+ attn_bias: Optional[torch.Tensor] = None,
306
+ key_padding_mask: Optional[torch.Tensor] = None,
307
+ is_causal: bool = False,
308
+ dropout_p: float = 0.0,
309
+ training: bool = False,
310
+ needs_weights: bool = False,
311
+ ) -> tuple[
312
+ torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]
313
+ ]:
314
+ try:
315
+ from .flash_attn_triton import flash_attn_func
316
+ except:
317
+ _installed = False
318
+ if version.parse(torch.__version__) < version.parse("2.0.0"):
319
+ _installed = True
320
+ try:
321
+ from flash_attn.flash_attn_triton import flash_attn_func
322
+ except:
323
+ _installed = False
324
+ if not _installed:
325
+ raise RuntimeError(
326
+ "Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU "
327
+ + "and `pip install .[gpu]` if installing from llm-foundry source or "
328
+ + "`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` "
329
+ + "if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). "
330
+ + "Note: (1) requires you have CMake and PyTorch already installed."
331
+ )
332
+ check_valid_inputs(query, key, value)
333
+ if past_key_value is not None:
334
+ if len(past_key_value) != 0:
335
+ key = torch.cat([past_key_value[0], key], dim=1)
336
+ value = torch.cat([past_key_value[1], value], dim=1)
337
+ past_key_value = (key, value)
338
+ if attn_bias is not None:
339
+ _s_q = max(0, attn_bias.size(2) - query.size(1))
340
+ _s_k = max(0, attn_bias.size(3) - key.size(1))
341
+ attn_bias = attn_bias[:, :, _s_q:, _s_k:]
342
+ if dropout_p:
343
+ raise NotImplementedError(f"Dropout not implemented for attn_impl: triton.")
344
+ dropout_p = dropout_p if training else 0.0
345
+ if needs_weights:
346
+ raise NotImplementedError(f"attn_impl: triton cannot return attn weights.")
347
+ if key_padding_mask is not None:
348
+ warnings.warn(
349
+ "Propagating key_padding_mask to the attention module "
350
+ + "and applying it within the attention module can cause "
351
+ + "unnecessary computation/memory usage. Consider integrating "
352
+ + "into attn_bias once and passing that to each attention "
353
+ + "module instead."
354
+ )
355
+ (b_size, s_k) = key_padding_mask.shape[:2]
356
+ if attn_bias is None:
357
+ attn_bias = query.new_zeros(b_size, 1, 1, s_k)
358
+ attn_bias = attn_bias.masked_fill(
359
+ ~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min
360
+ )
361
+ query = rearrange(query, "b s (h d) -> b s h d", h=n_heads)
362
+ key = rearrange(key, "b s (h d) -> b s h d", h=kv_n_heads)
363
+ value = rearrange(value, "b s (h d) -> b s h d", h=kv_n_heads)
364
+ if kv_n_heads == 1:
365
+ key = key.repeat(1, 1, n_heads, 1)
366
+ value = value.repeat(1, 1, n_heads, 1)
367
+ elif kv_n_heads < n_heads:
368
+ key = repeat_kv_for_gqa(key, n_heads // kv_n_heads)
369
+ value = repeat_kv_for_gqa(value, n_heads // kv_n_heads)
370
+ reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
371
+ attn_output = flash_attn_func(
372
+ query, key, value, attn_bias, reset_is_causal, softmax_scale
373
+ )
374
+ output = attn_output.view(*attn_output.shape[:2], -1)
375
+ return (output, None, past_key_value)
376
+
377
+
378
+ class GroupedQueryAttention(nn.Module):
379
+ """Grouped Query Attention (GQA) is a generalization of Multi-head (MHA).
380
+
381
+ and Multi-query attention (MQA).
382
+
383
+ This allows the user to set a variable of number of kv_n_heads, rather than
384
+ just n_heads or 1, as in MHA and MQA. Using torch or triton attention
385
+ implementation enables user to also use additive bias.
386
+ """
387
+
388
+ def __init__(
389
+ self,
390
+ d_model: int,
391
+ n_heads: int,
392
+ kv_n_heads: int,
393
+ attn_impl: str = "triton",
394
+ clip_qkv: Optional[float] = None,
395
+ qk_ln: bool = False,
396
+ qk_gn: bool = False,
397
+ softmax_scale: Optional[float] = None,
398
+ attn_pdrop: float = 0.0,
399
+ norm_type: str = "low_precision_layernorm",
400
+ fc_type: str = "torch",
401
+ device: Optional[str] = None,
402
+ bias: bool = True,
403
+ sliding_window_size: int = -1,
404
+ ):
405
+ super().__init__()
406
+ self.attn_impl = attn_impl
407
+ self.clip_qkv = clip_qkv
408
+ self.qk_ln = qk_ln
409
+ self.qk_gn = qk_gn
410
+ self.d_model = d_model
411
+ self.n_heads = n_heads
412
+ self.kv_n_heads = kv_n_heads
413
+ self.sliding_window_size = sliding_window_size
414
+ self.head_dim = d_model // n_heads
415
+ if self.kv_n_heads <= 0:
416
+ raise ValueError("kv_n_heads should be greater than zero.")
417
+ if self.kv_n_heads > self.n_heads:
418
+ raise ValueError(
419
+ "The number of KV heads should be less than or equal to Q heads."
420
+ )
421
+ if self.n_heads % self.kv_n_heads != 0:
422
+ raise ValueError(
423
+ "Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads."
424
+ )
425
+ if qk_ln and qk_gn:
426
+ raise ValueError("Only one of qk_ln and qk_gn can be set to True.")
427
+ self.softmax_scale = softmax_scale
428
+ if self.softmax_scale is None:
429
+ self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
430
+ self.attn_dropout_p = attn_pdrop
431
+ fc_kwargs: dict[str, Any] = {"bias": bias}
432
+ if fc_type != "te":
433
+ fc_kwargs["device"] = device
434
+ self.Wqkv = FC_CLASS_REGISTRY[fc_type](
435
+ self.d_model,
436
+ self.d_model + 2 * self.kv_n_heads * self.head_dim,
437
+ **fc_kwargs,
438
+ )
439
+ fuse_splits = [
440
+ i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)
441
+ ]
442
+ self.Wqkv._fused = (0, fuse_splits)
443
+ if self.qk_ln or self.qk_gn:
444
+ norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
445
+ norm_size = self.head_dim if qk_gn else d_model
446
+ self.q_ln = norm_class(norm_size, device=device)
447
+ if qk_ln:
448
+ norm_size = self.head_dim * kv_n_heads
449
+ self.k_ln = norm_class(norm_size, device=device)
450
+ if self.attn_impl == "flash":
451
+ self.attn_fn = flash_attn_fn
452
+ elif self.attn_impl == "triton":
453
+ self.attn_fn = triton_flash_attn_fn
454
+ elif self.attn_impl == "torch":
455
+ self.attn_fn = scaled_multihead_dot_product_attention
456
+ else:
457
+ raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.")
458
+ self.out_proj = FC_CLASS_REGISTRY[fc_type](
459
+ self.d_model, self.d_model, **fc_kwargs
460
+ )
461
+ self.out_proj._is_residual = True
462
+
463
+ def forward(
464
+ self,
465
+ x: torch.Tensor,
466
+ past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
467
+ attn_bias: Optional[torch.Tensor] = None,
468
+ attention_mask: Optional[torch.Tensor] = None,
469
+ rotary_emb_w_meta_info: Optional[dict] = None,
470
+ is_causal: bool = True,
471
+ needs_weights: bool = False,
472
+ alibi_slopes: Optional[torch.Tensor] = None,
473
+ flash_attn_padding_info: Optional[dict[str, torch.Tensor]] = None,
474
+ ) -> tuple[
475
+ torch.Tensor,
476
+ Optional[torch.Tensor],
477
+ Optional[tuple[torch.Tensor, torch.Tensor]],
478
+ ]:
479
+ qkv = self.Wqkv(x)
480
+ if self.clip_qkv:
481
+ qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
482
+ (query, key, value) = qkv.split(
483
+ [
484
+ self.d_model,
485
+ self.kv_n_heads * self.head_dim,
486
+ self.kv_n_heads * self.head_dim,
487
+ ],
488
+ dim=2,
489
+ )
490
+ key_padding_mask = attention_mask
491
+ if self.qk_ln or self.qk_gn:
492
+ (q_shape, k_shape) = (query.shape, key.shape)
493
+ if self.qk_gn:
494
+ (b, s) = query.shape[:2]
495
+ query = query.view(b, s, self.n_heads, -1)
496
+ key = key.view(b, s, self.kv_n_heads, -1)
497
+ dtype = query.dtype
498
+ query = self.q_ln(query).to(dtype).view(q_shape)
499
+ key = self.k_ln(key).to(dtype).view(k_shape)
500
+ if rotary_emb_w_meta_info is not None:
501
+ rotary_emb = rotary_emb_w_meta_info["rotary_emb"]
502
+ seq_len = rotary_emb_w_meta_info["seq_len"]
503
+ offset_info = rotary_emb_w_meta_info["offset_info"]
504
+ (bsz, seqlen) = query.shape[:2]
505
+ query = query.view(bsz, seqlen, -1, self.head_dim)
506
+ key = key.view(bsz, seqlen, -1, self.head_dim)
507
+ if rotary_emb_w_meta_info["impl"] == "dail":
508
+ value = value.view(bsz, seqlen, -1, self.head_dim)
509
+ kv = torch.stack([key, value], dim=2)
510
+ (query, kv) = rotary_emb(
511
+ query, kv, seqlen_offset=offset_info, max_seqlen=seq_len
512
+ )
513
+ [key, value] = torch.unbind(kv, dim=2)
514
+ value = value.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
515
+ elif rotary_emb_w_meta_info["impl"] == "hf":
516
+ (cos, sin) = rotary_emb(value, seq_len)
517
+ if is_transformers_version_gte("4.36"):
518
+ (query, key) = apply_rotary_pos_emb(
519
+ query, key, cos, sin, offset_info, unsqueeze_dim=2
520
+ )
521
+ else:
522
+ query = query.transpose(1, 2)
523
+ key = key.transpose(1, 2)
524
+ (query, key) = apply_rotary_pos_emb(
525
+ query, key, cos, sin, offset_info
526
+ )
527
+ query = query.transpose(1, 2)
528
+ key = key.transpose(1, 2)
529
+ query = query.view(bsz, seqlen, self.d_model)
530
+ key = key.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
531
+ extra_attn_kwargs = {}
532
+ if self.attn_impl == "flash":
533
+ key_padding_mask = None
534
+ extra_attn_kwargs = {
535
+ "should_repeat_kv_for_gqa": not is_flash_v2_installed(),
536
+ "sliding_window_size": self.sliding_window_size,
537
+ "alibi_slopes": alibi_slopes,
538
+ "flash_attn_padding_info": flash_attn_padding_info,
539
+ }
540
+ (context, attn_weights, past_key_value) = self.attn_fn(
541
+ query,
542
+ key,
543
+ value,
544
+ self.n_heads,
545
+ self.kv_n_heads,
546
+ past_key_value=past_key_value,
547
+ softmax_scale=self.softmax_scale,
548
+ attn_bias=attn_bias,
549
+ key_padding_mask=key_padding_mask,
550
+ is_causal=is_causal,
551
+ dropout_p=self.attn_dropout_p,
552
+ training=self.training,
553
+ needs_weights=needs_weights,
554
+ **extra_attn_kwargs,
555
+ )
556
+ return (self.out_proj(context), attn_weights, past_key_value)
557
+
558
+
559
+ class MultiheadAttention(GroupedQueryAttention):
560
+ """Multi-head self attention.
561
+
562
+ Using torch or triton attention implementation enables user to also use
563
+ additive bias.
564
+ """
565
+
566
+ def __init__(
567
+ self,
568
+ d_model: int,
569
+ n_heads: int,
570
+ attn_impl: str = "triton",
571
+ clip_qkv: Optional[float] = None,
572
+ qk_ln: bool = False,
573
+ qk_gn: bool = False,
574
+ softmax_scale: Optional[float] = None,
575
+ attn_pdrop: float = 0.0,
576
+ norm_type: str = "low_precision_layernorm",
577
+ fc_type: str = "torch",
578
+ device: Optional[str] = None,
579
+ bias: bool = True,
580
+ sliding_window_size: int = -1,
581
+ ):
582
+ super().__init__(
583
+ d_model=d_model,
584
+ n_heads=n_heads,
585
+ kv_n_heads=n_heads,
586
+ attn_impl=attn_impl,
587
+ clip_qkv=clip_qkv,
588
+ qk_ln=qk_ln,
589
+ qk_gn=qk_gn,
590
+ softmax_scale=softmax_scale,
591
+ attn_pdrop=attn_pdrop,
592
+ norm_type=norm_type,
593
+ fc_type=fc_type,
594
+ device=device,
595
+ bias=bias,
596
+ sliding_window_size=sliding_window_size,
597
+ )
598
+
599
+
600
+ class MultiQueryAttention(GroupedQueryAttention):
601
+ """Multi-Query self attention.
602
+
603
+ Using torch or triton attention implementation enables user to also use
604
+ additive bias.
605
+ """
606
+
607
+ def __init__(
608
+ self,
609
+ d_model: int,
610
+ n_heads: int,
611
+ attn_impl: str = "triton",
612
+ clip_qkv: Optional[float] = None,
613
+ qk_ln: bool = False,
614
+ qk_gn: bool = False,
615
+ softmax_scale: Optional[float] = None,
616
+ attn_pdrop: float = 0.0,
617
+ norm_type: str = "low_precision_layernorm",
618
+ fc_type: str = "torch",
619
+ device: Optional[str] = None,
620
+ bias: bool = True,
621
+ sliding_window_size: int = -1,
622
+ ):
623
+ super().__init__(
624
+ d_model=d_model,
625
+ n_heads=n_heads,
626
+ kv_n_heads=1,
627
+ attn_impl=attn_impl,
628
+ clip_qkv=clip_qkv,
629
+ qk_ln=qk_ln,
630
+ qk_gn=qk_gn,
631
+ softmax_scale=softmax_scale,
632
+ attn_pdrop=attn_pdrop,
633
+ norm_type=norm_type,
634
+ fc_type=fc_type,
635
+ device=device,
636
+ bias=bias,
637
+ sliding_window_size=sliding_window_size,
638
+ )
639
+
640
+
641
+ def attn_bias_shape(
642
+ attn_impl: str,
643
+ n_heads: int,
644
+ seq_len: int,
645
+ alibi: bool,
646
+ prefix_lm: bool,
647
+ causal: bool,
648
+ use_sequence_id: bool,
649
+ ) -> Optional[tuple[int, int, int, int]]:
650
+ if attn_impl == "flash":
651
+ return None
652
+ elif attn_impl in ["torch", "triton"]:
653
+ if alibi:
654
+ if (prefix_lm or not causal) or use_sequence_id:
655
+ return (1, n_heads, seq_len, seq_len)
656
+ return (1, n_heads, 1, seq_len)
657
+ elif prefix_lm or use_sequence_id:
658
+ return (1, 1, seq_len, seq_len)
659
+ return None
660
+ else:
661
+ raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.")
662
+
663
+
664
+ def build_attn_bias(
665
+ attn_impl: str,
666
+ attn_bias: torch.Tensor,
667
+ n_heads: int,
668
+ seq_len: int,
669
+ causal: bool = False,
670
+ alibi: bool = False,
671
+ alibi_bias_max: int = 8,
672
+ ) -> Optional[torch.Tensor]:
673
+ if attn_impl == "flash":
674
+ return None
675
+ elif attn_impl in ["torch", "triton"]:
676
+ if alibi:
677
+ (device, dtype) = (attn_bias.device, attn_bias.dtype)
678
+ attn_bias = attn_bias.add(
679
+ build_alibi_bias(
680
+ n_heads,
681
+ seq_len,
682
+ full=not causal,
683
+ alibi_bias_max=alibi_bias_max,
684
+ device=device,
685
+ dtype=dtype,
686
+ )
687
+ )
688
+ return attn_bias
689
+ else:
690
+ raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.")
691
+
692
+
693
+ def gen_slopes(
694
+ n_heads: int,
695
+ alibi_bias_max: int = 8,
696
+ device: Optional[torch.device] = None,
697
+ return_1d: bool = False,
698
+ ) -> torch.Tensor:
699
+ _n_heads = 2 ** math.ceil(math.log2(n_heads))
700
+ m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
701
+ m = m.mul(alibi_bias_max / _n_heads)
702
+ slopes = 1.0 / torch.pow(2, m)
703
+ if _n_heads != n_heads:
704
+ slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
705
+ if return_1d:
706
+ return slopes
707
+ return slopes.view(1, n_heads, 1, 1)
708
+
709
+
710
+ def build_alibi_bias(
711
+ n_heads: int,
712
+ seq_len: int,
713
+ full: bool = False,
714
+ alibi_bias_max: int = 8,
715
+ device: Optional[torch.device] = None,
716
+ dtype: Optional[torch.dtype] = None,
717
+ ) -> torch.Tensor:
718
+ alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(
719
+ 1, 1, 1, seq_len
720
+ )
721
+ if full:
722
+ alibi_bias = alibi_bias - torch.arange(
723
+ 1 - seq_len, 1, dtype=torch.int32, device=device
724
+ ).view(1, 1, seq_len, 1)
725
+ alibi_bias = alibi_bias.abs().mul(-1)
726
+ slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
727
+ alibi_bias = alibi_bias * slopes
728
+ return alibi_bias.to(dtype=dtype)
729
+
730
+
731
+ ATTN_CLASS_REGISTRY = {
732
+ "multihead_attention": MultiheadAttention,
733
+ "multiquery_attention": MultiQueryAttention,
734
+ "grouped_query_attention": GroupedQueryAttention,
735
+ }
blocks.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """GPT Blocks used for the GPT Model."""
2
+
3
+ from typing import Any, Dict, Optional, Tuple
4
+ import torch
5
+ import torch.nn as nn
6
+ from .attention import ATTN_CLASS_REGISTRY
7
+ from .ffn import FFN_CLASS_REGISTRY, build_ffn
8
+ from .norm import NORM_CLASS_REGISTRY
9
+
10
+ try:
11
+ from flash_attn.bert_padding import unpad_input, pad_input
12
+ except:
13
+ (unpad_input, pad_input) = (None, None)
14
+ attn_config_defaults: Dict = {
15
+ "attn_type": "multihead_attention",
16
+ "attn_pdrop": 0.0,
17
+ "attn_impl": "flash",
18
+ "qk_ln": True,
19
+ "qk_gn": False,
20
+ "clip_qkv": None,
21
+ "softmax_scale": None,
22
+ "prefix_lm": False,
23
+ "attn_uses_sequence_id": False,
24
+ "sliding_window_size": -1,
25
+ "alibi": False,
26
+ "alibi_bias_max": 8,
27
+ "rope": False,
28
+ "rope_theta": 10000,
29
+ "rope_impl": "dail",
30
+ "rope_dail_config": {
31
+ "type": "original",
32
+ "pos_idx_in_fp32": True,
33
+ "xpos_scale_base": 512,
34
+ },
35
+ "rope_hf_config": {"type": "no_scaling", "factor": 1.0},
36
+ }
37
+
38
+
39
+ class MPTBlock(nn.Module):
40
+
41
+ def __init__(
42
+ self,
43
+ d_model: int,
44
+ n_heads: int,
45
+ expansion_ratio: int,
46
+ attn_config: Optional[Dict] = None,
47
+ ffn_config: Optional[Dict] = None,
48
+ resid_pdrop: float = 0.0,
49
+ norm_type: str = "low_precision_layernorm",
50
+ fc_type: str = "torch",
51
+ device: Optional[str] = None,
52
+ no_bias: bool = False,
53
+ use_pad_tok_in_ffn: bool = True,
54
+ **kwargs: Any
55
+ ):
56
+ if attn_config is None:
57
+ attn_config = attn_config_defaults
58
+ if ffn_config is None:
59
+ ffn_config = {"ffn_type": "mptmlp"}
60
+ del kwargs
61
+ super().__init__()
62
+ norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
63
+ assert isinstance(attn_config["attn_type"], str)
64
+ attn_class = ATTN_CLASS_REGISTRY[attn_config["attn_type"]]
65
+ args_to_exclude_in_attn_class = {
66
+ "attn_type",
67
+ "prefix_lm",
68
+ "alibi",
69
+ "attn_uses_sequence_id",
70
+ "alibi_bias_max",
71
+ "rope",
72
+ "rope_theta",
73
+ "rope_impl",
74
+ "rope_dail_config",
75
+ "rope_hf_config",
76
+ }
77
+ attn_config_subset_for_attn_class = {
78
+ k: v
79
+ for (k, v) in attn_config.items()
80
+ if k not in args_to_exclude_in_attn_class
81
+ }
82
+ self.norm_1 = norm_class(d_model, device=device)
83
+ self.attn = attn_class(
84
+ d_model=d_model,
85
+ n_heads=n_heads,
86
+ fc_type=fc_type,
87
+ device=device,
88
+ **attn_config_subset_for_attn_class,
89
+ bias=not no_bias
90
+ )
91
+ self.norm_2 = None
92
+ if not getattr(FFN_CLASS_REGISTRY[ffn_config["ffn_type"]], "_has_norm", False):
93
+ self.norm_2 = norm_class(d_model, device=device)
94
+ self.ffn = build_ffn(
95
+ d_model=d_model,
96
+ expansion_ratio=expansion_ratio,
97
+ device=device,
98
+ bias=not no_bias,
99
+ **ffn_config
100
+ )
101
+ self.resid_attn_dropout = nn.Dropout(resid_pdrop)
102
+ self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
103
+ self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
104
+
105
+ def forward(
106
+ self,
107
+ x: torch.Tensor,
108
+ past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
109
+ attn_bias: Optional[torch.Tensor] = None,
110
+ rotary_emb_w_meta_info: Optional[Dict] = None,
111
+ attention_mask: Optional[torch.ByteTensor] = None,
112
+ is_causal: bool = True,
113
+ output_attentions: bool = False,
114
+ alibi_slopes: Optional[torch.Tensor] = None,
115
+ flash_attn_padding_info: Optional[dict[str, torch.Tensor]] = None,
116
+ ) -> Tuple[
117
+ torch.Tensor,
118
+ Optional[torch.Tensor],
119
+ Optional[Tuple[torch.Tensor, torch.Tensor]],
120
+ ]:
121
+ a = self.norm_1(x)
122
+ (b, attn_weights, past_key_value) = self.attn(
123
+ a,
124
+ past_key_value=past_key_value,
125
+ attn_bias=attn_bias,
126
+ rotary_emb_w_meta_info=rotary_emb_w_meta_info,
127
+ attention_mask=attention_mask,
128
+ is_causal=is_causal,
129
+ needs_weights=output_attentions,
130
+ alibi_slopes=alibi_slopes,
131
+ flash_attn_padding_info=flash_attn_padding_info,
132
+ )
133
+ x = x + self.resid_attn_dropout(b)
134
+ m = x
135
+ if self.norm_2 is not None:
136
+ m = self.norm_2(x)
137
+ (batch_size, seq_len) = m.size()[:2]
138
+ indices = None
139
+ if not self.use_pad_tok_in_ffn:
140
+ assert unpad_input is not None
141
+ (m, indices, _, _) = unpad_input(m, attention_mask)
142
+ n = self.ffn(m)
143
+ if not self.use_pad_tok_in_ffn:
144
+ assert pad_input is not None
145
+ n = pad_input(n, indices, batch_size, seq_len)
146
+ x = x + self.resid_ffn_dropout(n)
147
+ return (x, attn_weights, past_key_value)
config.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/users/nus/e0538503/scratch/models/sea-lion-7b-instruct",
3
+ "architectures": [
4
+ "MPTForCausalLM"
5
+ ],
6
+ "attn_config": {
7
+ "alibi": false,
8
+ "alibi_bias_max": 8,
9
+ "attn_impl": "torch",
10
+ "attn_pdrop": 0.0,
11
+ "attn_type": "multihead_attention",
12
+ "attn_uses_sequence_id": false,
13
+ "clip_qkv": null,
14
+ "prefix_lm": false,
15
+ "qk_gn": false,
16
+ "qk_ln": true,
17
+ "rope": false,
18
+ "rope_dail_config": {
19
+ "pos_idx_in_fp32": true,
20
+ "type": "original",
21
+ "xpos_scale_base": 512
22
+ },
23
+ "rope_hf_config": {
24
+ "factor": 1.0,
25
+ "type": "no_scaling"
26
+ },
27
+ "rope_impl": "dail",
28
+ "rope_theta": 10000,
29
+ "sliding_window_size": -1,
30
+ "softmax_scale": null
31
+ },
32
+ "auto_map": {
33
+ "AutoConfig": "configuration_mpt.MPTConfig",
34
+ "AutoModelForCausalLM": "modeling_mpt.MPTForCausalLM"
35
+ },
36
+ "d_model": 4096,
37
+ "emb_pdrop": 0.0,
38
+ "embedding_fraction": 0.1,
39
+ "expansion_ratio": 4,
40
+ "fc_type": "torch",
41
+ "ffn_config": {
42
+ "fc_type": "torch",
43
+ "ffn_type": "mptmlp"
44
+ },
45
+ "init_config": {
46
+ "emb_init_std": null,
47
+ "emb_init_uniform_lim": null,
48
+ "fan_mode": "fan_in",
49
+ "init_div_is_residual": true,
50
+ "init_gain": 0.0,
51
+ "init_nonlinearity": "relu",
52
+ "init_std": null,
53
+ "name": "kaiming_normal_",
54
+ "verbose": 0
55
+ },
56
+ "init_config_defaults": {
57
+ "init_std": 0.02
58
+ },
59
+ "init_device": "cpu",
60
+ "learned_pos_emb": true,
61
+ "logit_scale": "inv_sqrt_d_model",
62
+ "max_seq_len": 2048,
63
+ "model_type": "mpt",
64
+ "n_heads": 32,
65
+ "n_layers": 32,
66
+ "no_bias": false,
67
+ "norm_type": "low_precision_layernorm",
68
+ "resid_pdrop": 0.0,
69
+ "torch_dtype": "float16",
70
+ "transformers_version": "4.38.2",
71
+ "use_cache": false,
72
+ "use_pad_tok_in_ffn": true,
73
+ "vocab_size": 256000
74
+ }
configuration_mpt.py ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A HuggingFace-style model configuration."""
2
+
3
+ import warnings
4
+ from typing import Any, Dict, Optional, Union
5
+ from transformers import PretrainedConfig
6
+ from .attention import check_alibi_support, is_flash_v1_installed, is_flash_v2_installed
7
+ from .blocks import attn_config_defaults
8
+ from .fc import FC_CLASS_REGISTRY
9
+ from .norm import LPLayerNorm
10
+ from .ffn import FFN_CLASS_REGISTRY
11
+ from .warnings import VersionedDeprecationWarning
12
+
13
+ ffn_config_defaults: Dict = {"ffn_type": "mptmlp"}
14
+ init_config_defaults: Dict = {
15
+ "name": "kaiming_normal_",
16
+ "fan_mode": "fan_in",
17
+ "init_nonlinearity": "relu",
18
+ "init_div_is_residual": True,
19
+ "emb_init_std": None,
20
+ "emb_init_uniform_lim": None,
21
+ "init_std": None,
22
+ "init_gain": 0.0,
23
+ }
24
+
25
+
26
+ class MPTConfig(PretrainedConfig):
27
+ model_type = "mpt"
28
+
29
+ def __init__(
30
+ self,
31
+ d_model: int = 2048,
32
+ n_heads: int = 16,
33
+ n_layers: int = 24,
34
+ expansion_ratio: Union[int, float] = 4,
35
+ max_seq_len: int = 2048,
36
+ vocab_size: int = 50368,
37
+ resid_pdrop: float = 0.0,
38
+ emb_pdrop: float = 0.0,
39
+ learned_pos_emb: bool = True,
40
+ attn_config: Dict = attn_config_defaults,
41
+ ffn_config: Dict = ffn_config_defaults,
42
+ init_device: str = "cpu",
43
+ logit_scale: Optional[Union[float, str]] = None,
44
+ no_bias: bool = False,
45
+ embedding_fraction: float = 1.0,
46
+ norm_type: str = "low_precision_layernorm",
47
+ use_cache: bool = False,
48
+ init_config: Dict = init_config_defaults,
49
+ fc_type: str = "torch",
50
+ tie_word_embeddings: bool = True,
51
+ use_pad_tok_in_ffn: bool = True,
52
+ **kwargs: Any,
53
+ ):
54
+ """The MPT configuration class.
55
+
56
+ Args:
57
+ d_model (int): The size of the embedding dimension of the model.
58
+ n_heads (int): The number of attention heads.
59
+ n_layers (int): The number of layers in the model.
60
+ expansion_ratio (Union[int, float]): The ratio of the up/down scale in the ffn.
61
+ max_seq_len (int): The maximum sequence length of the model.
62
+ vocab_size (int): The size of the vocabulary.
63
+ resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
64
+ emb_pdrop (float): The dropout probability for the embedding layer.
65
+ learned_pos_emb (bool): Whether to use learned positional embeddings
66
+ attn_config (Dict): A dictionary used to configure the model's attention module:
67
+ attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
68
+ attn_pdrop (float): The dropout probability for the attention layers.
69
+ attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
70
+ qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
71
+ qk_gn (bool): Whether to apply group normalization to the queries and keys in the attention layer.
72
+ clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
73
+ this value.
74
+ softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
75
+ use the default scale of ``1/sqrt(d_keys)``.
76
+ prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
77
+ extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
78
+ can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
79
+ attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
80
+ When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
81
+ which sub-sequence each token belongs to.
82
+ Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
83
+ sliding_window_size (int): Window size for sliding window local attention. Defaults to -1, which means no sliding window. Query at position i will only attend to keys between [i + seqlen_k - seqlen_q - window_size, i + seqlen_k - seqlen_q + window_size] inclusive. Only works for flash attention v2.3.0 or higher.
84
+ alibi (bool): Whether to use the alibi bias instead of position embeddings.
85
+ alibi_bias_max (int): The maximum value of the alibi bias.
86
+ rope (bool): Whether to use rotary positional embeddings.
87
+ rope_theta (int): The base frequency for rope.
88
+ rope_impl (str): The implementation of rope to use. One of 'hf' (to use the implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py) or 'dail' (to use the implementation from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py).
89
+ rope_dail_config (Dict): The configuration for the dail implementation of rope.
90
+ type (str): The type of rotary position embedding to use. Options: 'original' (for https://arxiv.org/pdf/2104.09864.pdf), 'xpos' (for https://arxiv.org/pdf/2212.10554.pdf).
91
+ pos_idx_in_fp32 (bool): If True, the position indices [0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision. A consequence could be, for example, that bf16 rounds position 1995 to 2000, which leads to them having the same positional embedding.
92
+ xpos_scale_base (float): The scale base for XPos (if using XPos).
93
+ rope_hf_config (Dict): A dictionary used to configure rope's scaling behavior (when scaling beyond the training length).
94
+ type (str): Can be one of 'no_scaling', 'linear', or 'dynamic'. 'no_scaling' uses the default implementation for rotary embeddings, 'linear' uses linear scaling as proposed by the Reddit user /u/kaiokendev, and 'dynamic' uses Dynamic NTK scaling as proposed by the Reddit users /u/bloc97 and /u/emozilla.
95
+ factor (float): Scaling factor to use if using 'linear' or 'dynamic' as rope_scaling.type.
96
+ kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
97
+ ffn_config (Dict): A dictionary used to configure the model's ffn module:
98
+ ffn_type (str): type of ffn to use. Options: mptmlp, mptglu, te_ln_mlp
99
+ init_device (str): The device to use for parameter initialization.
100
+ logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
101
+ no_bias (bool): Whether to use bias in all layers.
102
+ embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
103
+ norm_type (str): choose type of norm to use
104
+ use_cache (bool): Whether or not the model should return the last key/values attentions
105
+ init_config (Dict): A dictionary used to configure the model initialization:
106
+ init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
107
+ 'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
108
+ 'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
109
+ init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
110
+ emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
111
+ emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
112
+ used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
113
+ init_std (float): The standard deviation of the normal distribution used to initialize the model,
114
+ if using the baseline_ parameter initialization scheme.
115
+ init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
116
+ fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
117
+ init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
118
+ ---
119
+ See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
120
+ fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
121
+ tie_word_embeddings (bool): Whether to tie the input embedding and output layers.
122
+ use_pad_tok_in_ffn (bool): Whether to forward the pad token in the feedforward networks.
123
+ """
124
+ self.d_model = d_model
125
+ self.n_heads = n_heads
126
+ self.n_layers = n_layers
127
+ self.expansion_ratio = expansion_ratio
128
+ self.max_seq_len = max_seq_len
129
+ self.vocab_size = vocab_size
130
+ self.resid_pdrop = resid_pdrop
131
+ self.emb_pdrop = emb_pdrop
132
+ self.learned_pos_emb = learned_pos_emb
133
+ self.attn_config = attn_config
134
+ self.ffn_config = ffn_config
135
+ self.init_device = init_device
136
+ self.logit_scale = logit_scale
137
+ self.no_bias = no_bias
138
+ self.embedding_fraction = embedding_fraction
139
+ self.norm_type = norm_type
140
+ self.use_cache = use_cache
141
+ self.init_config = init_config
142
+ self.fc_type = fc_type
143
+ self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
144
+ if "name" in kwargs:
145
+ del kwargs["name"]
146
+ if "loss_fn" in kwargs:
147
+ del kwargs["loss_fn"]
148
+ if self.attn_config.get("alibi", False) or self.attn_config.get("rope", False):
149
+ self.learned_pos_emb = False
150
+ warnings.warn(
151
+ f"alibi or rope is turned on, setting `learned_pos_emb` to `False.`"
152
+ )
153
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
154
+ self._validate_config()
155
+
156
+ def _set_config_defaults(
157
+ self, config: Dict[str, Any], config_defaults: Dict[str, Any]
158
+ ) -> Dict[str, Any]:
159
+ for k, v in config_defaults.items():
160
+ if k not in config:
161
+ config[k] = v
162
+ elif isinstance(v, dict):
163
+ config[k] = self._set_config_defaults(
164
+ config[k] if config[k] is not None else {}, v
165
+ )
166
+ return config
167
+
168
+ def _validate_config(self) -> None:
169
+ self.attn_config = self._set_config_defaults(
170
+ self.attn_config, attn_config_defaults
171
+ )
172
+ self.ffn_config = self._set_config_defaults(
173
+ self.ffn_config, ffn_config_defaults
174
+ )
175
+ self.init_config = self._set_config_defaults(
176
+ self.init_config, init_config_defaults
177
+ )
178
+ if self.d_model % self.n_heads != 0:
179
+ raise ValueError("d_model must be divisible by n_heads")
180
+ if any(
181
+ (
182
+ prob < 0 or prob > 1
183
+ for prob in [
184
+ self.attn_config["attn_pdrop"],
185
+ self.resid_pdrop,
186
+ self.emb_pdrop,
187
+ ]
188
+ )
189
+ ):
190
+ raise ValueError(
191
+ "self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1"
192
+ )
193
+ if self.attn_config["attn_impl"] not in ["torch", "flash", "triton"]:
194
+ raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
195
+ if self.attn_config["prefix_lm"] and self.attn_config["attn_impl"] not in [
196
+ "torch",
197
+ "triton",
198
+ ]:
199
+ raise NotImplementedError(
200
+ "prefix_lm only implemented with torch and triton attention."
201
+ )
202
+ if self.attn_config["attn_impl"] == "flash" and is_flash_v1_installed():
203
+ warnings.warn(
204
+ VersionedDeprecationWarning(
205
+ 'Support for Flash Attention v1 is deprecated. Please upgrade to Flash Attention v2.4.2. To install Flash Attention v2.4.2, please run `pip install -e ".[gpu-flash2]"` from the root directory of the llm-foundry repository.',
206
+ remove_version="0.6.0",
207
+ )
208
+ )
209
+ if self.attn_config["attn_impl"] == "triton" and (
210
+ not self.attn_config["prefix_lm"]
211
+ ):
212
+ warnings.warn(
213
+ UserWarning(
214
+ 'If not using a Prefix Language Model, we recommend setting "attn_impl" to "flash" instead of "triton".'
215
+ )
216
+ )
217
+ if self.attn_config["alibi"] and (
218
+ not check_alibi_support(self.attn_config["attn_impl"])
219
+ ):
220
+ raise NotImplementedError(
221
+ "alibi only implemented with torch, triton, and flash (v2.4.2 or higher) attention."
222
+ )
223
+ if self.attn_config["attn_uses_sequence_id"] and (
224
+ not (
225
+ self.attn_config["attn_impl"] in ["torch", "triton"]
226
+ or (
227
+ self.attn_config["attn_impl"] == "flash"
228
+ and is_flash_v2_installed(v2_version="v2.1.2")
229
+ )
230
+ )
231
+ ):
232
+ raise NotImplementedError(
233
+ "attn_uses_sequence_id only implemented with torch, triton, and flash (v2.1.2 or higher) attention."
234
+ )
235
+ if self.attn_config["rope"] and self.attn_config["rope_impl"] not in [
236
+ "dail",
237
+ "hf",
238
+ ]:
239
+ raise ValueError(
240
+ 'If rope is being used then rope_impl should be either "dail", or "hf".'
241
+ )
242
+ if (
243
+ self.attn_config["rope"]
244
+ and self.attn_config["rope_impl"] == "hf"
245
+ and (
246
+ self.attn_config["rope_hf_config"]["type"]
247
+ not in ["no_scaling", "linear", "dynamic"]
248
+ )
249
+ ):
250
+ raise ValueError(
251
+ 'If using hf implementation of rope, the type should be one of "no_scaling", "linear" or "dynamic".'
252
+ )
253
+ if self.attn_config["rope"] and self.attn_config["rope_impl"] == "dail":
254
+ if self.attn_config["rope_dail_config"]["type"] not in ["original", "xpos"]:
255
+ raise ValueError(
256
+ 'If using the dail implementation of rope, the type should be one of "original" or "xpos".'
257
+ )
258
+ if not is_flash_v2_installed(v2_version="2.0.1"):
259
+ raise ImportError(
260
+ "If using the dail implementation of rope, the flash_attn library v2.0.1 or higher must be installed. Please check the instructions at https://github.com/mosaicml/llm-foundry/blob/main/TUTORIAL.md#what-kinds-of-positional-embeddings-does-llm-foundry-support"
261
+ )
262
+ if self.attn_config["sliding_window_size"] != -1 and (
263
+ not (
264
+ self.attn_config["attn_impl"] == "flash"
265
+ and is_flash_v2_installed(v2_version="v2.3.0")
266
+ )
267
+ ):
268
+ raise NotImplementedError(
269
+ "sliding window only implemented with flash attention v2.3.0 or higher."
270
+ )
271
+ if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
272
+ raise ValueError(
273
+ "model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!"
274
+ )
275
+ if isinstance(self.logit_scale, str) and self.logit_scale != "inv_sqrt_d_model":
276
+ raise ValueError(
277
+ f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
278
+ )
279
+ if self.init_config.get("name", None) is None:
280
+ raise ValueError(
281
+ f"self.init_config={self.init_config!r} 'name' needs to be set."
282
+ )
283
+ if not (
284
+ self.learned_pos_emb
285
+ or self.attn_config["alibi"]
286
+ or self.attn_config["rope"]
287
+ ):
288
+ warnings.warn(
289
+ f"Positional information not being provided to the model using either learned_pos_emb or alibi or rope."
290
+ )
291
+ if self.fc_type == "te" or self.ffn_config["ffn_type"] == "te_ln_mlp":
292
+ try:
293
+ import transformer_engine.pytorch as te
294
+
295
+ del te
296
+ except:
297
+ raise ImportError(
298
+ "TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. "
299
+ + "The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n"
300
+ + "pip install flash-attn==1.0.6 --no-build-isolation \n"
301
+ + "pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156"
302
+ )
303
+ if self.ffn_config["ffn_type"] == "mptgeglu":
304
+ raise ValueError(
305
+ 'API CHANGE: `ffn_type=="mptgeglu"` changed to `ffn_type=="mptglu"`. '
306
+ + "See [#829](https://github.com/mosaicml/llm-foundry/pull/829) for details."
307
+ )
308
+ elif self.ffn_config["ffn_type"] in ["mptmlp", "mptglu"]:
309
+ self.ffn_config["fc_type"] = self.fc_type
310
+ elif self.ffn_config["ffn_type"] == "te_ln_mlp":
311
+ self.ffn_config["bias"] = not self.no_bias
312
+ if "ffn_act_fn" in self.ffn_config.keys():
313
+ raise ValueError(
314
+ f"Transformer Engine block does not support custom activation functions."
315
+ )
316
+ if not self.use_pad_tok_in_ffn:
317
+ try:
318
+ from flash_attn.bert_padding import unpad_input, pad_input
319
+ except:
320
+ raise ImportError(
321
+ "In order to set `use_pad_tok_in_ffn=False`, please install flash-attn==1.0.9 or flash-attn==2.3.6"
322
+ )
custom_embedding.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn.functional as F
3
+ from torch import Tensor
4
+
5
+
6
+ class SharedEmbedding(nn.Embedding):
7
+
8
+ def forward(self, input: Tensor, unembed: bool = False) -> Tensor:
9
+ if unembed:
10
+ return F.linear(input, self.weight)
11
+ return super().forward(input)
fc.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+
3
+ FC_CLASS_REGISTRY = {"torch": nn.Linear}
4
+ try:
5
+ import transformer_engine.pytorch as te
6
+
7
+ FC_CLASS_REGISTRY["te"] = te.Linear
8
+ except:
9
+ pass
ffn.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """MPT Blocks used for the MPT Model."""
2
+
3
+ import logging
4
+ from copy import deepcopy
5
+ from functools import partial
6
+ from typing import Any, Callable, Optional, Union
7
+ import torch
8
+ import torch.nn as nn
9
+ from .fc import FC_CLASS_REGISTRY
10
+
11
+ try:
12
+ import transformer_engine.pytorch as te
13
+ except:
14
+ te = None
15
+ log = logging.getLogger(__name__)
16
+ _FFN_ACT_FN_DEFAULT = {"name": "gelu", "approximate": "none"}
17
+
18
+
19
+ def resolve_ffn_act_fn(
20
+ config: Optional[dict] = None,
21
+ ) -> Callable[[torch.Tensor], torch.Tensor]:
22
+ """Resolve the activation function for the feed-forward network.
23
+ Args:
24
+ config (Optional[dict]): The configuration dictionary for the activation function.
25
+ The dict config must specify the 'name' of a torch.nn.functional activation
26
+ function. All of other key values pairs are bound to the function as a partial.
27
+ Returns:
28
+ Callable[[torch.Tensor], torch.Tensor]: The activation function.
29
+ """
30
+ if config is None:
31
+ config = _FFN_ACT_FN_DEFAULT
32
+ config = deepcopy(config)
33
+ name = config.pop("name")
34
+ if not hasattr(torch.nn.functional, name):
35
+ raise ValueError(f"Unrecognised activation function name ({name}).")
36
+ act = getattr(torch.nn.functional, name)
37
+ return partial(act, **config)
38
+
39
+
40
+ _DEFAULT_ACT_FN = resolve_ffn_act_fn(_FFN_ACT_FN_DEFAULT)
41
+
42
+
43
+ def resolve_ffn_hidden_size(
44
+ d_model: int,
45
+ expansion_ratio: Union[int, float],
46
+ ffn_hidden_size: Optional[int] = None,
47
+ ) -> int:
48
+ """Resolve the hidden size of the feed-forward network.
49
+ Args:
50
+ d_model (int): The dimension of the input and output of the feed-forward network.
51
+ expansion_ratio (Union[int, float]): The expansion ratio of the feed-forward network.
52
+ ffn_hidden_size (Optional[int]): The hidden size of the feed-forward network.
53
+ Returns:
54
+ int: The hidden size of the feed-forward network.
55
+ """
56
+ if ffn_hidden_size is not None:
57
+ log.info(
58
+ f"`expansion_ratio` (={expansion_ratio}) ignored when `ffn_hidden_size` (={ffn_hidden_size}) is specified."
59
+ )
60
+ else:
61
+ ffn_hidden_size = int(d_model * expansion_ratio)
62
+ if ffn_hidden_size != d_model * expansion_ratio:
63
+ raise ValueError(
64
+ f"`d_model * expansion_ratio` must be an integer (d_model={d_model!r}; expansion_ratio={expansion_ratio!r}; d_model * expansion_ratio={d_model * expansion_ratio!r})."
65
+ )
66
+ return ffn_hidden_size
67
+
68
+
69
+ class MPTMLP(nn.Module):
70
+
71
+ def __init__(
72
+ self,
73
+ d_model: int,
74
+ expansion_ratio: Union[int, float],
75
+ fc_type: str = "torch",
76
+ ffn_hidden_size: Optional[int] = None,
77
+ act_fn: Callable[[torch.Tensor], torch.Tensor] = _DEFAULT_ACT_FN,
78
+ device: Optional[str] = None,
79
+ bias: bool = True,
80
+ ):
81
+ super().__init__()
82
+ ffn_hidden_size = resolve_ffn_hidden_size(
83
+ d_model, expansion_ratio, ffn_hidden_size
84
+ )
85
+ self.fc_kwargs: dict[str, Any] = {"bias": bias}
86
+ if fc_type != "te":
87
+ self.fc_kwargs["device"] = device
88
+ self.up_proj = FC_CLASS_REGISTRY[fc_type](
89
+ d_model, ffn_hidden_size, **self.fc_kwargs
90
+ )
91
+ self.act = act_fn
92
+ self.down_proj = FC_CLASS_REGISTRY[fc_type](
93
+ ffn_hidden_size, d_model, **self.fc_kwargs
94
+ )
95
+ self.down_proj._is_residual = True
96
+
97
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
98
+ return self.down_proj(self.act(self.up_proj(x)))
99
+
100
+
101
+ class MPTGLU(MPTMLP):
102
+
103
+ def __init__(
104
+ self,
105
+ d_model: int,
106
+ expansion_ratio: Union[int, float],
107
+ fc_type: str = "torch",
108
+ ffn_hidden_size: Optional[int] = None,
109
+ act_fn: Callable[[torch.Tensor], torch.Tensor] = _DEFAULT_ACT_FN,
110
+ device: Optional[str] = None,
111
+ bias: bool = True,
112
+ ):
113
+ super().__init__(
114
+ d_model=d_model,
115
+ expansion_ratio=expansion_ratio,
116
+ fc_type=fc_type,
117
+ ffn_hidden_size=ffn_hidden_size,
118
+ act_fn=act_fn,
119
+ device=device,
120
+ bias=bias,
121
+ )
122
+ self.gate_proj = FC_CLASS_REGISTRY[fc_type](
123
+ d_model, self.up_proj.out_features, **self.fc_kwargs
124
+ )
125
+
126
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
127
+ return self.down_proj(self.act(self.gate_proj(x)) * self.up_proj(x))
128
+
129
+
130
+ FFN_CLASS_REGISTRY = {"mptmlp": MPTMLP, "mptglu": MPTGLU}
131
+ if te is not None:
132
+ te.LayerNormMLP._has_norm = True
133
+ FFN_CLASS_REGISTRY["te_ln_mlp"] = te.LayerNormMLP
134
+
135
+
136
+ def build_ffn(
137
+ d_model: int,
138
+ expansion_ratio: Union[int, float],
139
+ fc_type: str = "torch",
140
+ ffn_hidden_size: Optional[int] = None,
141
+ ffn_act_fn: Optional[dict] = None,
142
+ device: Optional[str] = None,
143
+ bias: bool = True,
144
+ **kwargs: Any,
145
+ ) -> nn.Module:
146
+ ffn_type = kwargs.pop("ffn_type")
147
+ if ffn_type in ["mptmlp", "mptglu"]:
148
+ if len(kwargs) > 0:
149
+ raise ValueError(
150
+ f"MPTMLP (or MPTGLU) got an unexpected keyword argument: {kwargs}"
151
+ )
152
+ return FFN_CLASS_REGISTRY[ffn_type](
153
+ d_model=d_model,
154
+ expansion_ratio=expansion_ratio,
155
+ fc_type=fc_type,
156
+ act_fn=resolve_ffn_act_fn(ffn_act_fn),
157
+ ffn_hidden_size=ffn_hidden_size,
158
+ device=device,
159
+ bias=bias,
160
+ )
161
+ elif ffn_type == "te_ln_mlp":
162
+ assert te is not None
163
+ ffn_hidden_size = resolve_ffn_hidden_size(
164
+ d_model, expansion_ratio, ffn_hidden_size
165
+ )
166
+ if ffn_act_fn is not None:
167
+ raise ValueError(
168
+ f"Transformer Engine block does not support custom activation functions."
169
+ )
170
+ return te.LayerNormMLP(
171
+ hidden_size=d_model, ffn_hidden_size=ffn_hidden_size, bias=bias, **kwargs
172
+ )
173
+ raise ValueError(f"ffn_type={ffn_type!r} not recognized.")
flash_attn_triton.py ADDED
@@ -0,0 +1,1085 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
3
+ update imports to use 'triton_pre_mlir'
4
+ *Experimental* implementation of FlashAttention in Triton.
5
+ Tested with triton==2.0.0.dev20221202.
6
+ Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
7
+ other than 64:
8
+ https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
9
+ We'll update this implementation with the new Triton backend once this is fixed.
10
+ We use the FlashAttention implementation from Phil Tillet a starting point.
11
+ https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
12
+ Changes:
13
+ - Implement both causal and non-causal attention.
14
+ - Implement both self-attention and cross-attention.
15
+ - Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
16
+ - Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
17
+ - Support attention bias.
18
+ - Speed up the forward pass a bit, and only store the LSE instead of m and l.
19
+ - Make the backward for d=128 much faster by reducing register spilling.
20
+ - Optionally parallelize the backward pass across seqlen_k, to deal with the case of
21
+ small batch size * nheads.
22
+ Caution:
23
+ - This is an *experimental* implementation. The forward pass should be quite robust but
24
+ I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
25
+ - This implementation has only been tested on A100.
26
+ - If you plan to use headdim other than 64 and 128, you should test for race conditions
27
+ (due to the Triton compiler), as done in tests/test_flash_attn.py
28
+ "test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
29
+ for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
30
+ that there are none left for other head dimensions.
31
+ Differences between this Triton version and the CUDA version:
32
+ - Triton version doesn't support dropout.
33
+ - Triton forward is generally faster than CUDA forward, while Triton backward is
34
+ generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
35
+ than CUDA forward + backward.
36
+ - Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
37
+ - Triton version supports attention bias, while CUDA version doesn't.
38
+ """
39
+
40
+ import math
41
+ import torch
42
+ import triton_pre_mlir as triton
43
+ import triton_pre_mlir.language as tl
44
+
45
+
46
+ @triton.heuristics(
47
+ {
48
+ "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
49
+ "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
50
+ "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
51
+ }
52
+ )
53
+ @triton.jit
54
+ def _fwd_kernel(
55
+ Q,
56
+ K,
57
+ V,
58
+ Bias,
59
+ Out,
60
+ Lse,
61
+ TMP,
62
+ softmax_scale,
63
+ stride_qb,
64
+ stride_qh,
65
+ stride_qm,
66
+ stride_kb,
67
+ stride_kh,
68
+ stride_kn,
69
+ stride_vb,
70
+ stride_vh,
71
+ stride_vn,
72
+ stride_bb,
73
+ stride_bh,
74
+ stride_bm,
75
+ stride_ob,
76
+ stride_oh,
77
+ stride_om,
78
+ nheads,
79
+ seqlen_q,
80
+ seqlen_k,
81
+ seqlen_q_rounded,
82
+ headdim,
83
+ CACHE_KEY_SEQLEN_Q,
84
+ CACHE_KEY_SEQLEN_K,
85
+ BIAS_TYPE: tl.constexpr,
86
+ IS_CAUSAL: tl.constexpr,
87
+ BLOCK_HEADDIM: tl.constexpr,
88
+ EVEN_M: tl.constexpr,
89
+ EVEN_N: tl.constexpr,
90
+ EVEN_HEADDIM: tl.constexpr,
91
+ BLOCK_M: tl.constexpr,
92
+ BLOCK_N: tl.constexpr,
93
+ ):
94
+ start_m = tl.program_id(0)
95
+ off_hb = tl.program_id(1)
96
+ off_b = off_hb // nheads
97
+ off_h = off_hb % nheads
98
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
99
+ offs_n = tl.arange(0, BLOCK_N)
100
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
101
+ q_ptrs = (
102
+ Q
103
+ + off_b * stride_qb
104
+ + off_h * stride_qh
105
+ + (offs_m[:, None] * stride_qm + offs_d[None, :])
106
+ )
107
+ k_ptrs = (
108
+ K
109
+ + off_b * stride_kb
110
+ + off_h * stride_kh
111
+ + (offs_n[:, None] * stride_kn + offs_d[None, :])
112
+ )
113
+ v_ptrs = (
114
+ V
115
+ + off_b * stride_vb
116
+ + off_h * stride_vh
117
+ + (offs_n[:, None] * stride_vn + offs_d[None, :])
118
+ )
119
+ if BIAS_TYPE == "vector":
120
+ b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
121
+ elif BIAS_TYPE == "matrix":
122
+ b_ptrs = (
123
+ Bias
124
+ + off_b * stride_bb
125
+ + off_h * stride_bh
126
+ + (offs_m[:, None] * stride_bm + offs_n[None, :])
127
+ )
128
+ t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
129
+ lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
130
+ m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
131
+ acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
132
+ if EVEN_M & EVEN_N:
133
+ if EVEN_HEADDIM:
134
+ q = tl.load(q_ptrs)
135
+ else:
136
+ q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
137
+ elif EVEN_HEADDIM:
138
+ q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
139
+ else:
140
+ q = tl.load(
141
+ q_ptrs,
142
+ mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
143
+ other=0.0,
144
+ )
145
+ end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
146
+ for start_n in range(0, end_n, BLOCK_N):
147
+ start_n = tl.multiple_of(start_n, BLOCK_N)
148
+ if EVEN_N & EVEN_M:
149
+ if EVEN_HEADDIM:
150
+ k = tl.load(k_ptrs + start_n * stride_kn)
151
+ else:
152
+ k = tl.load(
153
+ k_ptrs + start_n * stride_kn,
154
+ mask=offs_d[None, :] < headdim,
155
+ other=0.0,
156
+ )
157
+ elif EVEN_HEADDIM:
158
+ k = tl.load(
159
+ k_ptrs + start_n * stride_kn,
160
+ mask=(start_n + offs_n)[:, None] < seqlen_k,
161
+ other=0.0,
162
+ )
163
+ else:
164
+ k = tl.load(
165
+ k_ptrs + start_n * stride_kn,
166
+ mask=((start_n + offs_n)[:, None] < seqlen_k)
167
+ & (offs_d[None, :] < headdim),
168
+ other=0.0,
169
+ )
170
+ qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
171
+ qk += tl.dot(q, k, trans_b=True)
172
+ if not EVEN_N:
173
+ qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
174
+ if IS_CAUSAL:
175
+ qk += tl.where(
176
+ offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf")
177
+ )
178
+ if BIAS_TYPE != "none":
179
+ if BIAS_TYPE == "vector":
180
+ if EVEN_N:
181
+ bias = tl.load(b_ptrs + start_n).to(tl.float32)
182
+ else:
183
+ bias = tl.load(
184
+ b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0
185
+ ).to(tl.float32)
186
+ bias = bias[None, :]
187
+ elif BIAS_TYPE == "matrix":
188
+ if EVEN_M & EVEN_N:
189
+ bias = tl.load(b_ptrs + start_n).to(tl.float32)
190
+ else:
191
+ bias = tl.load(
192
+ b_ptrs + start_n,
193
+ mask=(offs_m[:, None] < seqlen_q)
194
+ & ((start_n + offs_n)[None, :] < seqlen_k),
195
+ other=0.0,
196
+ ).to(tl.float32)
197
+ qk = qk * softmax_scale + bias
198
+ m_ij = tl.maximum(tl.max(qk, 1), lse_i)
199
+ p = tl.exp(qk - m_ij[:, None])
200
+ else:
201
+ m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
202
+ p = tl.exp(qk * softmax_scale - m_ij[:, None])
203
+ l_ij = tl.sum(p, 1)
204
+ acc_o_scale = tl.exp(m_i - m_ij)
205
+ tl.store(t_ptrs, acc_o_scale)
206
+ acc_o_scale = tl.load(t_ptrs)
207
+ acc_o = acc_o * acc_o_scale[:, None]
208
+ if EVEN_N & EVEN_M:
209
+ if EVEN_HEADDIM:
210
+ v = tl.load(v_ptrs + start_n * stride_vn)
211
+ else:
212
+ v = tl.load(
213
+ v_ptrs + start_n * stride_vn,
214
+ mask=offs_d[None, :] < headdim,
215
+ other=0.0,
216
+ )
217
+ elif EVEN_HEADDIM:
218
+ v = tl.load(
219
+ v_ptrs + start_n * stride_vn,
220
+ mask=(start_n + offs_n)[:, None] < seqlen_k,
221
+ other=0.0,
222
+ )
223
+ else:
224
+ v = tl.load(
225
+ v_ptrs + start_n * stride_vn,
226
+ mask=((start_n + offs_n)[:, None] < seqlen_k)
227
+ & (offs_d[None, :] < headdim),
228
+ other=0.0,
229
+ )
230
+ p = p.to(v.dtype)
231
+ acc_o += tl.dot(p, v)
232
+ m_i = m_ij
233
+ l_i_new = tl.exp(lse_i - m_ij) + l_ij
234
+ lse_i = m_ij + tl.log(l_i_new)
235
+ o_scale = tl.exp(m_i - lse_i)
236
+ tl.store(t_ptrs, o_scale)
237
+ o_scale = tl.load(t_ptrs)
238
+ acc_o = acc_o * o_scale[:, None]
239
+ start_m = tl.program_id(0)
240
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
241
+ lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
242
+ tl.store(lse_ptrs, lse_i)
243
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
244
+ out_ptrs = (
245
+ Out
246
+ + off_b * stride_ob
247
+ + off_h * stride_oh
248
+ + (offs_m[:, None] * stride_om + offs_d[None, :])
249
+ )
250
+ if EVEN_M:
251
+ if EVEN_HEADDIM:
252
+ tl.store(out_ptrs, acc_o)
253
+ else:
254
+ tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
255
+ elif EVEN_HEADDIM:
256
+ tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
257
+ else:
258
+ tl.store(
259
+ out_ptrs,
260
+ acc_o,
261
+ mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
262
+ )
263
+
264
+
265
+ @triton.jit
266
+ def _bwd_preprocess_do_o_dot(
267
+ Out,
268
+ DO,
269
+ Delta,
270
+ stride_ob,
271
+ stride_oh,
272
+ stride_om,
273
+ stride_dob,
274
+ stride_doh,
275
+ stride_dom,
276
+ nheads,
277
+ seqlen_q,
278
+ seqlen_q_rounded,
279
+ headdim,
280
+ BLOCK_M: tl.constexpr,
281
+ BLOCK_HEADDIM: tl.constexpr,
282
+ ):
283
+ start_m = tl.program_id(0)
284
+ off_hb = tl.program_id(1)
285
+ off_b = off_hb // nheads
286
+ off_h = off_hb % nheads
287
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
288
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
289
+ o = tl.load(
290
+ Out
291
+ + off_b * stride_ob
292
+ + off_h * stride_oh
293
+ + offs_m[:, None] * stride_om
294
+ + offs_d[None, :],
295
+ mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
296
+ other=0.0,
297
+ ).to(tl.float32)
298
+ do = tl.load(
299
+ DO
300
+ + off_b * stride_dob
301
+ + off_h * stride_doh
302
+ + offs_m[:, None] * stride_dom
303
+ + offs_d[None, :],
304
+ mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
305
+ other=0.0,
306
+ ).to(tl.float32)
307
+ delta = tl.sum(o * do, axis=1)
308
+ tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
309
+
310
+
311
+ @triton.jit
312
+ def _bwd_store_dk_dv(
313
+ dk_ptrs,
314
+ dv_ptrs,
315
+ dk,
316
+ dv,
317
+ offs_n,
318
+ offs_d,
319
+ seqlen_k,
320
+ headdim,
321
+ EVEN_M: tl.constexpr,
322
+ EVEN_N: tl.constexpr,
323
+ EVEN_HEADDIM: tl.constexpr,
324
+ ):
325
+ if EVEN_N & EVEN_M:
326
+ if EVEN_HEADDIM:
327
+ tl.store(dv_ptrs, dv)
328
+ tl.store(dk_ptrs, dk)
329
+ else:
330
+ tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
331
+ tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
332
+ elif EVEN_HEADDIM:
333
+ tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
334
+ tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
335
+ else:
336
+ tl.store(
337
+ dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)
338
+ )
339
+ tl.store(
340
+ dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)
341
+ )
342
+
343
+
344
+ @triton.jit
345
+ def _bwd_kernel_one_col_block(
346
+ start_n,
347
+ Q,
348
+ K,
349
+ V,
350
+ Bias,
351
+ DO,
352
+ DQ,
353
+ DK,
354
+ DV,
355
+ LSE,
356
+ D,
357
+ softmax_scale,
358
+ stride_qm,
359
+ stride_kn,
360
+ stride_vn,
361
+ stride_bm,
362
+ stride_dom,
363
+ stride_dqm,
364
+ stride_dkn,
365
+ stride_dvn,
366
+ seqlen_q,
367
+ seqlen_k,
368
+ headdim,
369
+ ATOMIC_ADD: tl.constexpr,
370
+ BIAS_TYPE: tl.constexpr,
371
+ IS_CAUSAL: tl.constexpr,
372
+ BLOCK_HEADDIM: tl.constexpr,
373
+ EVEN_M: tl.constexpr,
374
+ EVEN_N: tl.constexpr,
375
+ EVEN_HEADDIM: tl.constexpr,
376
+ BLOCK_M: tl.constexpr,
377
+ BLOCK_N: tl.constexpr,
378
+ ):
379
+ begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
380
+ offs_qm = begin_m + tl.arange(0, BLOCK_M)
381
+ offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
382
+ offs_m = tl.arange(0, BLOCK_M)
383
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
384
+ q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
385
+ k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
386
+ v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
387
+ do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
388
+ dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
389
+ if BIAS_TYPE == "vector":
390
+ b_ptrs = Bias + offs_n
391
+ elif BIAS_TYPE == "matrix":
392
+ b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
393
+ dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
394
+ dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
395
+ if begin_m >= seqlen_q:
396
+ dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
397
+ dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
398
+ _bwd_store_dk_dv(
399
+ dk_ptrs,
400
+ dv_ptrs,
401
+ dk,
402
+ dv,
403
+ offs_n,
404
+ offs_d,
405
+ seqlen_k,
406
+ headdim,
407
+ EVEN_M=EVEN_M,
408
+ EVEN_N=EVEN_N,
409
+ EVEN_HEADDIM=EVEN_HEADDIM,
410
+ )
411
+ return
412
+ if EVEN_N & EVEN_M:
413
+ if EVEN_HEADDIM:
414
+ k = tl.load(k_ptrs)
415
+ v = tl.load(v_ptrs)
416
+ else:
417
+ k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
418
+ v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
419
+ elif EVEN_HEADDIM:
420
+ k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
421
+ v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
422
+ else:
423
+ k = tl.load(
424
+ k_ptrs,
425
+ mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
426
+ other=0.0,
427
+ )
428
+ v = tl.load(
429
+ v_ptrs,
430
+ mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
431
+ other=0.0,
432
+ )
433
+ num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
434
+ for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
435
+ start_m = tl.multiple_of(start_m, BLOCK_M)
436
+ offs_m_curr = start_m + offs_m
437
+ if EVEN_M & EVEN_HEADDIM:
438
+ q = tl.load(q_ptrs)
439
+ elif EVEN_HEADDIM:
440
+ q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
441
+ else:
442
+ q = tl.load(
443
+ q_ptrs,
444
+ mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
445
+ other=0.0,
446
+ )
447
+ qk = tl.dot(q, k, trans_b=True)
448
+ if not EVEN_N:
449
+ qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
450
+ if IS_CAUSAL:
451
+ qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float("-inf"))
452
+ if BIAS_TYPE != "none":
453
+ tl.debug_barrier()
454
+ if BIAS_TYPE == "vector":
455
+ if EVEN_N:
456
+ bias = tl.load(b_ptrs).to(tl.float32)
457
+ else:
458
+ bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(
459
+ tl.float32
460
+ )
461
+ bias = bias[None, :]
462
+ elif BIAS_TYPE == "matrix":
463
+ if EVEN_M & EVEN_N:
464
+ bias = tl.load(b_ptrs).to(tl.float32)
465
+ else:
466
+ bias = tl.load(
467
+ b_ptrs,
468
+ mask=(offs_m_curr[:, None] < seqlen_q)
469
+ & (offs_n[None, :] < seqlen_k),
470
+ other=0.0,
471
+ ).to(tl.float32)
472
+ qk = qk * softmax_scale + bias
473
+ if not EVEN_M & EVEN_HEADDIM:
474
+ tl.debug_barrier()
475
+ lse_i = tl.load(LSE + offs_m_curr)
476
+ if BIAS_TYPE == "none":
477
+ p = tl.exp(qk * softmax_scale - lse_i[:, None])
478
+ else:
479
+ p = tl.exp(qk - lse_i[:, None])
480
+ if EVEN_M & EVEN_HEADDIM:
481
+ do = tl.load(do_ptrs)
482
+ else:
483
+ do = tl.load(
484
+ do_ptrs,
485
+ mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
486
+ other=0.0,
487
+ )
488
+ dv += tl.dot(p.to(do.dtype), do, trans_a=True)
489
+ if not EVEN_M & EVEN_HEADDIM:
490
+ tl.debug_barrier()
491
+ dp = tl.dot(do, v, trans_b=True)
492
+ if not EVEN_HEADDIM:
493
+ tl.debug_barrier()
494
+ Di = tl.load(D + offs_m_curr)
495
+ ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
496
+ dk += tl.dot(ds, q, trans_a=True)
497
+ if not EVEN_M & EVEN_HEADDIM:
498
+ tl.debug_barrier()
499
+ if not ATOMIC_ADD:
500
+ if EVEN_M & EVEN_HEADDIM:
501
+ dq = tl.load(dq_ptrs, eviction_policy="evict_last")
502
+ dq += tl.dot(ds, k)
503
+ tl.store(dq_ptrs, dq, eviction_policy="evict_last")
504
+ elif EVEN_HEADDIM:
505
+ dq = tl.load(
506
+ dq_ptrs,
507
+ mask=offs_m_curr[:, None] < seqlen_q,
508
+ other=0.0,
509
+ eviction_policy="evict_last",
510
+ )
511
+ dq += tl.dot(ds, k)
512
+ tl.store(
513
+ dq_ptrs,
514
+ dq,
515
+ mask=offs_m_curr[:, None] < seqlen_q,
516
+ eviction_policy="evict_last",
517
+ )
518
+ else:
519
+ dq = tl.load(
520
+ dq_ptrs,
521
+ mask=(offs_m_curr[:, None] < seqlen_q)
522
+ & (offs_d[None, :] < headdim),
523
+ other=0.0,
524
+ eviction_policy="evict_last",
525
+ )
526
+ dq += tl.dot(ds, k)
527
+ tl.store(
528
+ dq_ptrs,
529
+ dq,
530
+ mask=(offs_m_curr[:, None] < seqlen_q)
531
+ & (offs_d[None, :] < headdim),
532
+ eviction_policy="evict_last",
533
+ )
534
+ else:
535
+ dq = tl.dot(ds, k)
536
+ if EVEN_M & EVEN_HEADDIM:
537
+ tl.atomic_add(dq_ptrs, dq)
538
+ elif EVEN_HEADDIM:
539
+ tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
540
+ else:
541
+ tl.atomic_add(
542
+ dq_ptrs,
543
+ dq,
544
+ mask=(offs_m_curr[:, None] < seqlen_q)
545
+ & (offs_d[None, :] < headdim),
546
+ )
547
+ dq_ptrs += BLOCK_M * stride_dqm
548
+ q_ptrs += BLOCK_M * stride_qm
549
+ do_ptrs += BLOCK_M * stride_dom
550
+ if BIAS_TYPE == "matrix":
551
+ b_ptrs += BLOCK_M * stride_bm
552
+ dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
553
+ dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
554
+ _bwd_store_dk_dv(
555
+ dk_ptrs,
556
+ dv_ptrs,
557
+ dk,
558
+ dv,
559
+ offs_n,
560
+ offs_d,
561
+ seqlen_k,
562
+ headdim,
563
+ EVEN_M=EVEN_M,
564
+ EVEN_N=EVEN_N,
565
+ EVEN_HEADDIM=EVEN_HEADDIM,
566
+ )
567
+
568
+
569
+ def init_to_zero(name):
570
+ return lambda nargs: nargs[name].zero_()
571
+
572
+
573
+ @triton.autotune(
574
+ configs=[
575
+ triton.Config(
576
+ {"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False},
577
+ num_warps=8,
578
+ num_stages=1,
579
+ pre_hook=init_to_zero("DQ"),
580
+ ),
581
+ triton.Config(
582
+ {"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True},
583
+ num_warps=8,
584
+ num_stages=1,
585
+ pre_hook=init_to_zero("DQ"),
586
+ ),
587
+ ],
588
+ key=[
589
+ "CACHE_KEY_SEQLEN_Q",
590
+ "CACHE_KEY_SEQLEN_K",
591
+ "BIAS_TYPE",
592
+ "IS_CAUSAL",
593
+ "BLOCK_HEADDIM",
594
+ ],
595
+ )
596
+ @triton.heuristics(
597
+ {
598
+ "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
599
+ "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
600
+ "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
601
+ }
602
+ )
603
+ @triton.jit
604
+ def _bwd_kernel(
605
+ Q,
606
+ K,
607
+ V,
608
+ Bias,
609
+ DO,
610
+ DQ,
611
+ DK,
612
+ DV,
613
+ LSE,
614
+ D,
615
+ softmax_scale,
616
+ stride_qb,
617
+ stride_qh,
618
+ stride_qm,
619
+ stride_kb,
620
+ stride_kh,
621
+ stride_kn,
622
+ stride_vb,
623
+ stride_vh,
624
+ stride_vn,
625
+ stride_bb,
626
+ stride_bh,
627
+ stride_bm,
628
+ stride_dob,
629
+ stride_doh,
630
+ stride_dom,
631
+ stride_dqb,
632
+ stride_dqh,
633
+ stride_dqm,
634
+ stride_dkb,
635
+ stride_dkh,
636
+ stride_dkn,
637
+ stride_dvb,
638
+ stride_dvh,
639
+ stride_dvn,
640
+ nheads,
641
+ seqlen_q,
642
+ seqlen_k,
643
+ seqlen_q_rounded,
644
+ headdim,
645
+ CACHE_KEY_SEQLEN_Q,
646
+ CACHE_KEY_SEQLEN_K,
647
+ BIAS_TYPE: tl.constexpr,
648
+ IS_CAUSAL: tl.constexpr,
649
+ BLOCK_HEADDIM: tl.constexpr,
650
+ SEQUENCE_PARALLEL: tl.constexpr,
651
+ EVEN_M: tl.constexpr,
652
+ EVEN_N: tl.constexpr,
653
+ EVEN_HEADDIM: tl.constexpr,
654
+ BLOCK_M: tl.constexpr,
655
+ BLOCK_N: tl.constexpr,
656
+ ):
657
+ off_hb = tl.program_id(1)
658
+ off_b = off_hb // nheads
659
+ off_h = off_hb % nheads
660
+ Q += off_b * stride_qb + off_h * stride_qh
661
+ K += off_b * stride_kb + off_h * stride_kh
662
+ V += off_b * stride_vb + off_h * stride_vh
663
+ DO += off_b * stride_dob + off_h * stride_doh
664
+ DQ += off_b * stride_dqb + off_h * stride_dqh
665
+ DK += off_b * stride_dkb + off_h * stride_dkh
666
+ DV += off_b * stride_dvb + off_h * stride_dvh
667
+ if BIAS_TYPE != "none":
668
+ Bias += off_b * stride_bb + off_h * stride_bh
669
+ D += off_hb * seqlen_q_rounded
670
+ LSE += off_hb * seqlen_q_rounded
671
+ if not SEQUENCE_PARALLEL:
672
+ num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
673
+ for start_n in range(0, num_block_n):
674
+ _bwd_kernel_one_col_block(
675
+ start_n,
676
+ Q,
677
+ K,
678
+ V,
679
+ Bias,
680
+ DO,
681
+ DQ,
682
+ DK,
683
+ DV,
684
+ LSE,
685
+ D,
686
+ softmax_scale,
687
+ stride_qm,
688
+ stride_kn,
689
+ stride_vn,
690
+ stride_bm,
691
+ stride_dom,
692
+ stride_dqm,
693
+ stride_dkn,
694
+ stride_dvn,
695
+ seqlen_q,
696
+ seqlen_k,
697
+ headdim,
698
+ ATOMIC_ADD=False,
699
+ BIAS_TYPE=BIAS_TYPE,
700
+ IS_CAUSAL=IS_CAUSAL,
701
+ BLOCK_HEADDIM=BLOCK_HEADDIM,
702
+ EVEN_M=EVEN_M,
703
+ EVEN_N=EVEN_N,
704
+ EVEN_HEADDIM=EVEN_HEADDIM,
705
+ BLOCK_M=BLOCK_M,
706
+ BLOCK_N=BLOCK_N,
707
+ )
708
+ else:
709
+ start_n = tl.program_id(0)
710
+ _bwd_kernel_one_col_block(
711
+ start_n,
712
+ Q,
713
+ K,
714
+ V,
715
+ Bias,
716
+ DO,
717
+ DQ,
718
+ DK,
719
+ DV,
720
+ LSE,
721
+ D,
722
+ softmax_scale,
723
+ stride_qm,
724
+ stride_kn,
725
+ stride_vn,
726
+ stride_bm,
727
+ stride_dom,
728
+ stride_dqm,
729
+ stride_dkn,
730
+ stride_dvn,
731
+ seqlen_q,
732
+ seqlen_k,
733
+ headdim,
734
+ ATOMIC_ADD=True,
735
+ BIAS_TYPE=BIAS_TYPE,
736
+ IS_CAUSAL=IS_CAUSAL,
737
+ BLOCK_HEADDIM=BLOCK_HEADDIM,
738
+ EVEN_M=EVEN_M,
739
+ EVEN_N=EVEN_N,
740
+ EVEN_HEADDIM=EVEN_HEADDIM,
741
+ BLOCK_M=BLOCK_M,
742
+ BLOCK_N=BLOCK_N,
743
+ )
744
+
745
+
746
+ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
747
+ (batch, seqlen_q, nheads, d) = q.shape
748
+ (_, seqlen_k, _, _) = k.shape
749
+ assert k.shape == (batch, seqlen_k, nheads, d)
750
+ assert v.shape == (batch, seqlen_k, nheads, d)
751
+ assert d <= 128, "FlashAttention only support head dimensions up to 128"
752
+ assert q.dtype == k.dtype == v.dtype, "All tensors must have the same type"
753
+ assert q.dtype in [torch.float16, torch.bfloat16], "Only support fp16 and bf16"
754
+ assert q.is_cuda and k.is_cuda and v.is_cuda
755
+ softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
756
+ has_bias = bias is not None
757
+ bias_type = "none"
758
+ if has_bias:
759
+ assert bias.dtype in [q.dtype, torch.float]
760
+ assert bias.is_cuda
761
+ assert bias.dim() == 4
762
+ if bias.stride(-1) != 1:
763
+ bias = bias.contiguous()
764
+ if bias.shape[2:] == (1, seqlen_k):
765
+ bias_type = "vector"
766
+ elif bias.shape[2:] == (seqlen_q, seqlen_k):
767
+ bias_type = "matrix"
768
+ else:
769
+ raise RuntimeError(
770
+ "Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)"
771
+ )
772
+ bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
773
+ bias_strides = (
774
+ (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
775
+ )
776
+ seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
777
+ lse = torch.empty(
778
+ (batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32
779
+ )
780
+ tmp = torch.empty(
781
+ (batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32
782
+ )
783
+ o = torch.empty_like(q)
784
+ BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
785
+ BLOCK = 128
786
+ num_warps = 4 if d <= 64 else 8
787
+ grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
788
+ _fwd_kernel[grid](
789
+ q,
790
+ k,
791
+ v,
792
+ bias,
793
+ o,
794
+ lse,
795
+ tmp,
796
+ softmax_scale,
797
+ q.stride(0),
798
+ q.stride(2),
799
+ q.stride(1),
800
+ k.stride(0),
801
+ k.stride(2),
802
+ k.stride(1),
803
+ v.stride(0),
804
+ v.stride(2),
805
+ v.stride(1),
806
+ *bias_strides,
807
+ o.stride(0),
808
+ o.stride(2),
809
+ o.stride(1),
810
+ nheads,
811
+ seqlen_q,
812
+ seqlen_k,
813
+ seqlen_q_rounded,
814
+ d,
815
+ seqlen_q // 32,
816
+ seqlen_k // 32,
817
+ bias_type,
818
+ causal,
819
+ BLOCK_HEADDIM,
820
+ BLOCK_M=BLOCK,
821
+ BLOCK_N=BLOCK,
822
+ num_warps=num_warps,
823
+ num_stages=1
824
+ )
825
+ return (o, lse, softmax_scale)
826
+
827
+
828
+ def _flash_attn_backward(
829
+ do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None
830
+ ):
831
+ if do.stride(-1) != 1:
832
+ do = do.contiguous()
833
+ (batch, seqlen_q, nheads, d) = q.shape
834
+ (_, seqlen_k, _, _) = k.shape
835
+ assert d <= 128
836
+ seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
837
+ assert lse.shape == (batch, nheads, seqlen_q_rounded)
838
+ assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
839
+ assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
840
+ softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
841
+ dq_accum = torch.empty_like(q, dtype=torch.float32)
842
+ delta = torch.empty_like(lse)
843
+ BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
844
+ grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
845
+ _bwd_preprocess_do_o_dot[grid](
846
+ o,
847
+ do,
848
+ delta,
849
+ o.stride(0),
850
+ o.stride(2),
851
+ o.stride(1),
852
+ do.stride(0),
853
+ do.stride(2),
854
+ do.stride(1),
855
+ nheads,
856
+ seqlen_q,
857
+ seqlen_q_rounded,
858
+ d,
859
+ BLOCK_M=128,
860
+ BLOCK_HEADDIM=BLOCK_HEADDIM,
861
+ )
862
+ has_bias = bias is not None
863
+ bias_type = "none"
864
+ if has_bias:
865
+ assert bias.dtype in [q.dtype, torch.float]
866
+ assert bias.is_cuda
867
+ assert bias.dim() == 4
868
+ assert bias.stride(-1) == 1
869
+ if bias.shape[2:] == (1, seqlen_k):
870
+ bias_type = "vector"
871
+ elif bias.shape[2:] == (seqlen_q, seqlen_k):
872
+ bias_type = "matrix"
873
+ else:
874
+ raise RuntimeError(
875
+ "Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)"
876
+ )
877
+ bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
878
+ bias_strides = (
879
+ (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
880
+ )
881
+ grid = lambda META: (
882
+ triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
883
+ batch * nheads,
884
+ )
885
+ _bwd_kernel[grid](
886
+ q,
887
+ k,
888
+ v,
889
+ bias,
890
+ do,
891
+ dq_accum,
892
+ dk,
893
+ dv,
894
+ lse,
895
+ delta,
896
+ softmax_scale,
897
+ q.stride(0),
898
+ q.stride(2),
899
+ q.stride(1),
900
+ k.stride(0),
901
+ k.stride(2),
902
+ k.stride(1),
903
+ v.stride(0),
904
+ v.stride(2),
905
+ v.stride(1),
906
+ *bias_strides,
907
+ do.stride(0),
908
+ do.stride(2),
909
+ do.stride(1),
910
+ dq_accum.stride(0),
911
+ dq_accum.stride(2),
912
+ dq_accum.stride(1),
913
+ dk.stride(0),
914
+ dk.stride(2),
915
+ dk.stride(1),
916
+ dv.stride(0),
917
+ dv.stride(2),
918
+ dv.stride(1),
919
+ nheads,
920
+ seqlen_q,
921
+ seqlen_k,
922
+ seqlen_q_rounded,
923
+ d,
924
+ seqlen_q // 32,
925
+ seqlen_k // 32,
926
+ bias_type,
927
+ causal,
928
+ BLOCK_HEADDIM
929
+ )
930
+ dq.copy_(dq_accum)
931
+
932
+
933
+ class FlashAttnQKVPackedFunc(torch.autograd.Function):
934
+
935
+ @staticmethod
936
+ def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
937
+ """
938
+ qkv: (batch, seqlen, 3, nheads, headdim)
939
+ bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
940
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
941
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
942
+ """
943
+ if qkv.stride(-1) != 1:
944
+ qkv = qkv.contiguous()
945
+ (o, lse, ctx.softmax_scale) = _flash_attn_forward(
946
+ qkv[:, :, 0],
947
+ qkv[:, :, 1],
948
+ qkv[:, :, 2],
949
+ bias=bias,
950
+ causal=causal,
951
+ softmax_scale=softmax_scale,
952
+ )
953
+ ctx.save_for_backward(qkv, o, lse, bias)
954
+ ctx.causal = causal
955
+ return o
956
+
957
+ @staticmethod
958
+ def backward(ctx, do):
959
+ (qkv, o, lse, bias) = ctx.saved_tensors
960
+ assert not ctx.needs_input_grad[
961
+ 1
962
+ ], "FlashAttention does not support bias gradient yet"
963
+ with torch.inference_mode():
964
+ dqkv = torch.empty_like(qkv)
965
+ _flash_attn_backward(
966
+ do,
967
+ qkv[:, :, 0],
968
+ qkv[:, :, 1],
969
+ qkv[:, :, 2],
970
+ o,
971
+ lse,
972
+ dqkv[:, :, 0],
973
+ dqkv[:, :, 1],
974
+ dqkv[:, :, 2],
975
+ bias=bias,
976
+ causal=ctx.causal,
977
+ softmax_scale=ctx.softmax_scale,
978
+ )
979
+ return (dqkv, None, None, None)
980
+
981
+
982
+ flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
983
+
984
+
985
+ class FlashAttnKVPackedFunc(torch.autograd.Function):
986
+
987
+ @staticmethod
988
+ def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
989
+ """
990
+ q: (batch, seqlen_q, nheads, headdim)
991
+ kv: (batch, seqlen_k, 2, nheads, headdim)
992
+ bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
993
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
994
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
995
+ """
996
+ (q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
997
+ (o, lse, ctx.softmax_scale) = _flash_attn_forward(
998
+ q,
999
+ kv[:, :, 0],
1000
+ kv[:, :, 1],
1001
+ bias=bias,
1002
+ causal=causal,
1003
+ softmax_scale=softmax_scale,
1004
+ )
1005
+ ctx.save_for_backward(q, kv, o, lse, bias)
1006
+ ctx.causal = causal
1007
+ return o
1008
+
1009
+ @staticmethod
1010
+ def backward(ctx, do):
1011
+ (q, kv, o, lse, bias) = ctx.saved_tensors
1012
+ if len(ctx.needs_input_grad) >= 3:
1013
+ assert not ctx.needs_input_grad[
1014
+ 2
1015
+ ], "FlashAttention does not support bias gradient yet"
1016
+ with torch.inference_mode():
1017
+ dq = torch.empty_like(q)
1018
+ dkv = torch.empty_like(kv)
1019
+ _flash_attn_backward(
1020
+ do,
1021
+ q,
1022
+ kv[:, :, 0],
1023
+ kv[:, :, 1],
1024
+ o,
1025
+ lse,
1026
+ dq,
1027
+ dkv[:, :, 0],
1028
+ dkv[:, :, 1],
1029
+ bias=bias,
1030
+ causal=ctx.causal,
1031
+ softmax_scale=ctx.softmax_scale,
1032
+ )
1033
+ return (dq, dkv, None, None, None)
1034
+
1035
+
1036
+ flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
1037
+
1038
+
1039
+ class FlashAttnFunc(torch.autograd.Function):
1040
+
1041
+ @staticmethod
1042
+ def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
1043
+ """
1044
+ q: (batch_size, seqlen_q, nheads, headdim)
1045
+ k, v: (batch_size, seqlen_k, nheads, headdim)
1046
+ bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
1047
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
1048
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
1049
+ """
1050
+ (q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
1051
+ (o, lse, ctx.softmax_scale) = _flash_attn_forward(
1052
+ q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale
1053
+ )
1054
+ ctx.save_for_backward(q, k, v, o, lse, bias)
1055
+ ctx.causal = causal
1056
+ return o
1057
+
1058
+ @staticmethod
1059
+ def backward(ctx, do):
1060
+ (q, k, v, o, lse, bias) = ctx.saved_tensors
1061
+ assert not ctx.needs_input_grad[
1062
+ 3
1063
+ ], "FlashAttention does not support bias gradient yet"
1064
+ with torch.inference_mode():
1065
+ dq = torch.empty_like(q)
1066
+ dk = torch.empty_like(k)
1067
+ dv = torch.empty_like(v)
1068
+ _flash_attn_backward(
1069
+ do,
1070
+ q,
1071
+ k,
1072
+ v,
1073
+ o,
1074
+ lse,
1075
+ dq,
1076
+ dk,
1077
+ dv,
1078
+ bias=bias,
1079
+ causal=ctx.causal,
1080
+ softmax_scale=ctx.softmax_scale,
1081
+ )
1082
+ return (dq, dk, dv, None, None, None)
1083
+
1084
+
1085
+ flash_attn_func = FlashAttnFunc.apply
gptq_model-4bit-128g.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:681d688b0189880dda3e905b139279d64c1f65326ee92fd5a73596bfbf47f589
3
+ size 5469228368
hf_prefixlm_converter.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Converts Huggingface Causal LM to Prefix LM.
2
+
3
+ Conversion does lightweight surgery on a HuggingFace
4
+ Causal LM to convert it to a Prefix LM.
5
+
6
+ Prefix LMs accepts a `bidirectional_mask` input in `forward`
7
+ and treat the input prompt as the prefix in `generate`.
8
+ """
9
+
10
+ from types import MethodType
11
+ from typing import Any, List, MutableMapping, Optional, Tuple, Union
12
+ import torch
13
+ from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
14
+ from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
15
+ from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
16
+ from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
17
+
18
+ _SUPPORTED_GPT_MODELS = (
19
+ GPT2LMHeadModel,
20
+ GPTJForCausalLM,
21
+ GPTNeoForCausalLM,
22
+ GPTNeoXForCausalLM,
23
+ )
24
+ CAUSAL_GPT_TYPES = Union[
25
+ GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM
26
+ ]
27
+
28
+
29
+ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
30
+ """Converts a GPT-style Causal LM to a Prefix LM.
31
+
32
+ Supported HuggingFace model classes:
33
+ - `GPT2LMHeadModel`
34
+ - `GPTNeoForCausalLM`
35
+ - `GPTNeoXForCausalLM`
36
+ - `GPTJForCausalLM`
37
+
38
+ See `convert_hf_causal_lm_to_prefix_lm` for more details.
39
+ """
40
+ if hasattr(model, "_prefix_lm_converted"):
41
+ return model
42
+ assert isinstance(model, _SUPPORTED_GPT_MODELS)
43
+ assert (
44
+ model.config.add_cross_attention == False
45
+ ), "Only supports GPT-style decoder-only models"
46
+
47
+ def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
48
+ """Helper that gets a list of the model's attention modules.
49
+
50
+ Each module has a `bias` buffer used for causal masking. The Prefix LM
51
+ conversion adds logic to dynamically manipulate these biases to support
52
+ Prefix LM attention masking.
53
+ """
54
+ attn_modules = []
55
+ if isinstance(model, GPTNeoXForCausalLM):
56
+ blocks = model.gpt_neox.layers
57
+ else:
58
+ blocks = model.transformer.h
59
+ for block in blocks:
60
+ if isinstance(model, GPTNeoForCausalLM):
61
+ if block.attn.attention_type != "global":
62
+ continue
63
+ attn_module = block.attn.attention
64
+ elif isinstance(model, GPTNeoXForCausalLM):
65
+ attn_module = block.attention
66
+ else:
67
+ attn_module = block.attn
68
+ attn_modules.append(attn_module)
69
+ return attn_modules
70
+
71
+ setattr(model, "_original_forward", getattr(model, "forward"))
72
+ setattr(model, "_original_generate", getattr(model, "generate"))
73
+
74
+ def forward(
75
+ self: CAUSAL_GPT_TYPES,
76
+ input_ids: Optional[torch.LongTensor] = None,
77
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
78
+ attention_mask: Optional[torch.FloatTensor] = None,
79
+ bidirectional_mask: Optional[torch.Tensor] = None,
80
+ token_type_ids: Optional[torch.LongTensor] = None,
81
+ position_ids: Optional[torch.LongTensor] = None,
82
+ head_mask: Optional[torch.FloatTensor] = None,
83
+ inputs_embeds: Optional[torch.FloatTensor] = None,
84
+ labels: Optional[torch.LongTensor] = None,
85
+ use_cache: Optional[bool] = None,
86
+ output_attentions: Optional[bool] = None,
87
+ output_hidden_states: Optional[bool] = None,
88
+ return_dict: Optional[bool] = None,
89
+ ):
90
+ """Wraps original forward to enable PrefixLM attention."""
91
+
92
+ def call_og_forward():
93
+ if isinstance(self, GPTNeoXForCausalLM):
94
+ return self._original_forward(
95
+ input_ids=input_ids,
96
+ past_key_values=past_key_values,
97
+ attention_mask=attention_mask,
98
+ head_mask=head_mask,
99
+ inputs_embeds=inputs_embeds,
100
+ labels=labels,
101
+ use_cache=use_cache,
102
+ output_attentions=output_attentions,
103
+ output_hidden_states=output_hidden_states,
104
+ return_dict=return_dict,
105
+ )
106
+ else:
107
+ return self._original_forward(
108
+ input_ids=input_ids,
109
+ past_key_values=past_key_values,
110
+ attention_mask=attention_mask,
111
+ token_type_ids=token_type_ids,
112
+ position_ids=position_ids,
113
+ head_mask=head_mask,
114
+ inputs_embeds=inputs_embeds,
115
+ labels=labels,
116
+ use_cache=use_cache,
117
+ output_attentions=output_attentions,
118
+ output_hidden_states=output_hidden_states,
119
+ return_dict=return_dict,
120
+ )
121
+
122
+ if bidirectional_mask is None:
123
+ return call_og_forward()
124
+ assert isinstance(bidirectional_mask, torch.Tensor)
125
+ attn_modules = _get_attn_modules(model)
126
+ (b, s) = bidirectional_mask.shape
127
+ max_length = attn_modules[0].bias.shape[-1]
128
+ if s > max_length:
129
+ raise ValueError(
130
+ f"bidirectional_mask sequence length (={s}) exceeds the "
131
+ + f"max length allowed by the model ({max_length})."
132
+ )
133
+ assert s <= max_length
134
+ if s < max_length:
135
+ pad = torch.zeros(
136
+ (int(b), int(max_length - s)),
137
+ dtype=bidirectional_mask.dtype,
138
+ device=bidirectional_mask.device,
139
+ )
140
+ bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
141
+ bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
142
+ for attn_module in attn_modules:
143
+ assert isinstance(attn_module.bias, torch.Tensor)
144
+ attn_module.bias.data = torch.logical_or(
145
+ attn_module.bias.data, bidirectional
146
+ )
147
+ output = call_og_forward()
148
+ for attn_module in attn_modules:
149
+ attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
150
+ return output
151
+
152
+ def generate(self: CAUSAL_GPT_TYPES, *args: Any, **kwargs: Any):
153
+ """Wraps original generate to enable PrefixLM attention."""
154
+ attn_modules = _get_attn_modules(model)
155
+ for attn_module in attn_modules:
156
+ attn_module.bias.data[:] = 1
157
+ output = self._original_generate(*args, **kwargs)
158
+ for attn_module in attn_modules:
159
+ attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
160
+ return output
161
+
162
+ setattr(model, "forward", MethodType(forward, model))
163
+ setattr(model, "generate", MethodType(generate, model))
164
+ setattr(model, "_prefix_lm_converted", True)
165
+ return model
166
+
167
+
168
+ _SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS
169
+ CAUSAL_LM_TYPES = Union[
170
+ GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM
171
+ ]
172
+
173
+
174
+ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
175
+ """Converts a HuggingFace Causal LM to a Prefix LM.
176
+
177
+ Supported HuggingFace model classes:
178
+ - `GPT2LMHeadModel`
179
+ - `GPTNeoForCausalLM`
180
+ - `GPTNeoXForCausalLM`
181
+ - `GPTJForCausalLM`
182
+
183
+ Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
184
+ `generate` method and/or select underlying methods depending on the model class.
185
+
186
+ These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask".
187
+
188
+ Notes on training:
189
+ To actually train the converted model as a Prefix LM, training batches will need to indicate
190
+ the prefix/target structure by including `bidirectional_mask` as part of the batch inputs.
191
+
192
+ **This is not a standard input and requires custom layers either within or after your dataloader.**
193
+
194
+ In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels`
195
+ such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`.
196
+ That is, the prefix portion of the sequence should not generate any loss. Loss should only be
197
+ generated by the target portion of the sequence.
198
+
199
+ Notes on `GPTNeoForCausalLM`:
200
+ To simplify the implementation, "global" and "local" attention layers are handled differently.
201
+ For "global" layers, we handle conversion as described above. For "local" layers, which use a
202
+ causal attention mask within a restricted local window, we do not alter the masking.
203
+
204
+ Notes on `forward` method conversion:
205
+ After conversion, the `forward` method will handle a new input, `bidirectional_mask`,
206
+ which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions
207
+ belonging to the prefix (prefix tokens can attend to one another bidirectionally), and
208
+ 0 indicates token positions belonging to the target.
209
+
210
+ The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing
211
+ causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset
212
+ the causal masks before returning the result.
213
+
214
+ Notes on `generate` method conversion:
215
+ After conversion, the `generate` method will have the same signature but will internally
216
+ convert all causal masks to be purely bidirectional, call the original `generate` method, and
217
+ (where appropriate) reset the causal masks before returning the result.
218
+
219
+ This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token
220
+ "prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates
221
+ each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one
222
+ another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and
223
+ previously-generated tokens (also as expected in a Prefix LM).
224
+
225
+ To preserve the API, the original methods are renamed to `_original_forward` and
226
+ `_original_generate`, and replaced with new `forward` and `generate` methods that wrap
227
+ them, respectively. Although implementation details vary by model class.
228
+ """
229
+ if isinstance(model, _SUPPORTED_GPT_MODELS):
230
+ return _convert_gpt_causal_lm_to_prefix_lm(model)
231
+ else:
232
+ raise TypeError(
233
+ f"Cannot convert model to Prefix LM. "
234
+ + f"Model does not belong to set of supported HF models:"
235
+ + f"\n{_SUPPORTED_HF_MODELS}"
236
+ )
237
+
238
+
239
+ def add_bidirectional_mask_if_missing(batch: MutableMapping):
240
+ """Attempts to add bidirectional_mask to batch if missing.
241
+
242
+ Raises:
243
+ KeyError if bidirectional_mask is missing and can't be inferred
244
+ """
245
+ if "bidirectional_mask" not in batch:
246
+ if batch.get("mode", None) == "icl_task":
247
+ batch["bidirectional_mask"] = batch["attention_mask"].clone()
248
+ for i, continuation_indices in enumerate(batch["continuation_indices"]):
249
+ batch["bidirectional_mask"][i, continuation_indices] = 0
250
+ elif "labels" in batch and "attention_mask" in batch:
251
+ batch["bidirectional_mask"] = torch.logical_and(
252
+ torch.eq(batch["attention_mask"], 1), torch.eq(batch["labels"], -100)
253
+ ).type_as(batch["attention_mask"])
254
+ else:
255
+ raise KeyError(
256
+ "No bidirectional_mask in batch and not sure how to construct one."
257
+ )
meta_init_context.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from contextlib import contextmanager
2
+ from typing import Any, Callable, Optional
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+
7
+ @contextmanager
8
+ def init_empty_weights(include_buffers: bool = False):
9
+ """Meta initialization context manager.
10
+
11
+ A context manager under which models are initialized with all parameters
12
+ on the meta device, therefore creating an empty model. Useful when just
13
+ initializing the model would blow the available RAM.
14
+
15
+ Args:
16
+ include_buffers (`bool`, *optional*, defaults to `False`): Whether or
17
+ not to also put all buffers on the meta device while initializing.
18
+
19
+ Example:
20
+ ```python
21
+ import torch.nn as nn
22
+
23
+ # Initialize a model with 100 billions parameters in no time and without using any RAM.
24
+ with init_empty_weights():
25
+ tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
26
+ ```
27
+
28
+ <Tip warning={true}>
29
+
30
+ Any model created under this context manager has no weights. As such you can't do something like
31
+ `model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
32
+
33
+ </Tip>
34
+ """
35
+ with init_on_device(torch.device("meta"), include_buffers=include_buffers) as f:
36
+ yield f
37
+
38
+
39
+ @contextmanager
40
+ def init_on_device(device: torch.device, include_buffers: bool = False):
41
+ """Device initialization context manager.
42
+
43
+ A context manager under which models are initialized with all parameters
44
+ on the specified device.
45
+
46
+ Args:
47
+ device (`torch.device`): Device to initialize all parameters on.
48
+ include_buffers (`bool`, *optional*, defaults to `False`): Whether or
49
+ not to also put all buffers on the meta device while initializing.
50
+
51
+ Example:
52
+ ```python
53
+ import torch.nn as nn
54
+
55
+ with init_on_device(device=torch.device("cuda")):
56
+ tst = nn.Liner(100, 100) # on `cuda` device
57
+ ```
58
+ """
59
+ old_register_parameter = nn.Module.register_parameter
60
+ if include_buffers:
61
+ old_register_buffer = nn.Module.register_buffer
62
+
63
+ def register_empty_parameter(
64
+ self: torch.nn.Module, name: str, param: Optional[torch.nn.Parameter]
65
+ ):
66
+ old_register_parameter(self, name, param)
67
+ if param is not None:
68
+ parameter = self._parameters[name]
69
+ assert parameter is not None
70
+ param_cls = type(parameter)
71
+ kwargs = parameter.__dict__
72
+ self._parameters[name] = param_cls(parameter.to(device), **kwargs)
73
+
74
+ def register_empty_buffer(
75
+ self: torch.nn.Module,
76
+ name: str,
77
+ tensor: Optional[torch.Tensor],
78
+ persistent: bool = True,
79
+ ):
80
+ old_register_buffer(self, name, tensor, persistent=persistent)
81
+ if tensor is not None:
82
+ named_buffer = self._buffers[name]
83
+ assert named_buffer is not None
84
+ self._buffers[name] = named_buffer.to(device)
85
+
86
+ if include_buffers:
87
+ tensor_constructors_to_patch = {
88
+ torch_function_name: getattr(torch, torch_function_name)
89
+ for torch_function_name in ["empty", "zeros", "ones", "full"]
90
+ }
91
+ else:
92
+ tensor_constructors_to_patch = {}
93
+
94
+ def patch_tensor_constructor(fn: Callable):
95
+
96
+ def wrapper(*args: Any, **kwargs: Any):
97
+ kwargs["device"] = device
98
+ return fn(*args, **kwargs)
99
+
100
+ return wrapper
101
+
102
+ try:
103
+ nn.Module.register_parameter = register_empty_parameter
104
+ if include_buffers:
105
+ nn.Module.register_buffer = register_empty_buffer
106
+ for torch_function_name in tensor_constructors_to_patch.keys():
107
+ setattr(
108
+ torch,
109
+ torch_function_name,
110
+ patch_tensor_constructor(getattr(torch, torch_function_name)),
111
+ )
112
+ yield
113
+ finally:
114
+ nn.Module.register_parameter = old_register_parameter
115
+ if include_buffers:
116
+ nn.Module.register_buffer = old_register_buffer
117
+ for (
118
+ torch_function_name,
119
+ old_torch_function,
120
+ ) in tensor_constructors_to_patch.items():
121
+ setattr(torch, torch_function_name, old_torch_function)
modeling_mpt.py ADDED
@@ -0,0 +1,907 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A simple, flexible implementation of a GPT model.
2
+
3
+ Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
4
+ """
5
+
6
+ from __future__ import annotations
7
+ import math
8
+ import warnings
9
+ from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ from .attention import is_flash_v1_installed, is_flash_v2_installed
14
+
15
+ if is_flash_v2_installed():
16
+ try:
17
+ from flash_attn import bert_padding
18
+ from flash_attn.layers.rotary import RotaryEmbedding as DAILRotaryEmbedding
19
+ except Exception as e:
20
+ raise e
21
+ if is_flash_v1_installed():
22
+ try:
23
+ from flash_attn import bert_padding
24
+ except Exception as e:
25
+ raise e
26
+ from transformers import PreTrainedModel, PreTrainedTokenizerBase
27
+ from transformers.modeling_outputs import (
28
+ BaseModelOutputWithPast,
29
+ CausalLMOutputWithPast,
30
+ )
31
+ from transformers.models.llama.modeling_llama import (
32
+ LlamaDynamicNTKScalingRotaryEmbedding as HFDynamicNTKScalingRotaryEmbedding,
33
+ )
34
+ from transformers.models.llama.modeling_llama import (
35
+ LlamaLinearScalingRotaryEmbedding as HFLinearScalingRotaryEmbedding,
36
+ )
37
+ from transformers.models.llama.modeling_llama import (
38
+ LlamaRotaryEmbedding as HFRotaryEmbedding,
39
+ )
40
+ from .attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes
41
+ from .blocks import MPTBlock
42
+ from .custom_embedding import SharedEmbedding
43
+ from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
44
+ from .ffn import FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY
45
+ from .ffn import MPTMLP as MPTMLP
46
+ from .ffn import build_ffn as build_ffn
47
+ from .norm import NORM_CLASS_REGISTRY
48
+ from .configuration_mpt import MPTConfig
49
+ from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
50
+ from .hf_prefixlm_converter import (
51
+ add_bidirectional_mask_if_missing,
52
+ convert_hf_causal_lm_to_prefix_lm,
53
+ )
54
+ from .meta_init_context import init_empty_weights
55
+ from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY
56
+
57
+ try:
58
+ from .flash_attn_triton import flash_attn_func as flash_attn_func
59
+ except:
60
+ pass
61
+ import logging
62
+
63
+ log = logging.getLogger(__name__)
64
+
65
+
66
+ def gen_rotary_embedding(
67
+ rope_head_dim: int,
68
+ rope_impl: str,
69
+ rope_theta: int,
70
+ rope_dail_config: dict,
71
+ rope_hf_config: dict,
72
+ max_seq_len: int,
73
+ ):
74
+ if rope_impl == "dail":
75
+ return DAILRotaryEmbedding(
76
+ dim=rope_head_dim,
77
+ base=rope_theta,
78
+ interleaved=False,
79
+ scale_base=(
80
+ rope_dail_config["xpos_scale_base"]
81
+ if rope_dail_config["type"] == "xpos"
82
+ else None
83
+ ),
84
+ pos_idx_in_fp32=rope_dail_config["pos_idx_in_fp32"],
85
+ device="cpu",
86
+ )
87
+ elif rope_impl == "hf":
88
+ if rope_hf_config["type"] == "no_scaling":
89
+ return HFRotaryEmbedding(
90
+ rope_head_dim,
91
+ max_position_embeddings=max_seq_len,
92
+ base=rope_theta,
93
+ device="cpu",
94
+ )
95
+ elif rope_hf_config["type"] == "linear":
96
+ return HFLinearScalingRotaryEmbedding(
97
+ rope_head_dim,
98
+ max_position_embeddings=max_seq_len,
99
+ base=rope_theta,
100
+ scaling_factor=rope_hf_config["factor"],
101
+ device="cpu",
102
+ )
103
+ elif rope_hf_config["type"] == "dynamic":
104
+ return HFDynamicNTKScalingRotaryEmbedding(
105
+ rope_head_dim,
106
+ max_position_embeddings=max_seq_len,
107
+ base=rope_theta,
108
+ scaling_factor=rope_hf_config["factor"],
109
+ device="cpu",
110
+ )
111
+ raise ValueError("rope_impl needs to be either dail or hf")
112
+
113
+
114
+ def gen_attention_mask_in_length(
115
+ sequence_id: Union[None, torch.Tensor],
116
+ S: int,
117
+ attn_uses_sequence_id: bool,
118
+ attn_impl: str,
119
+ attention_mask: Union[torch.Tensor, None],
120
+ ):
121
+ """Generates the attention mask used for sequence masking in FA v2.
122
+
123
+ Only supports sequence id based sparse attention for no attention masking or attention masking with right padding.
124
+ In case of left padding:
125
+ 1. Training with left padding is not supported in MPT (see https://github.com/mosaicml/llm-foundry/blob/1eecd4cb8e734499f77f6a35f657b8b20c0adfcb/llmfoundry/models/mpt/modeling_mpt.py#L407).
126
+ 2. For generation with left padding, we only have a single sequence id per sample, so we don't need sequence id based sparse attention.
127
+
128
+ Args:
129
+ sequence_id (Union[None, torch.Tensor]): Tensor containing the sequence id for each token. Shape (batch_size, seq_len).
130
+ S (int): Sequence length
131
+ attn_uses_sequence_id (bool): Whether the attention uses sequence id based masking.
132
+ attn_impl (str): Attention implementation. This function is only creates attention_mask_in_length for flash attention.
133
+ attention_mask (Union[torch.Tensor, None]): Attention mask tensor of shape (batch_size, seq_len)
134
+
135
+ Returns:
136
+ attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none. For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
137
+ ```
138
+ [
139
+ [2, 3, 0, 0, 0, 0],
140
+ [3, 2, 0, 0, 0, 0],
141
+ [6, 0, 0, 0, 0, 0]
142
+ ]
143
+ ```
144
+ , which refers to the 3D-attention mask:
145
+ ```
146
+ [
147
+ [
148
+ [1, 0, 0, 0, 0, 0],
149
+ [1, 1, 0, 0, 0, 0],
150
+ [0, 0, 1, 0, 0, 0],
151
+ [0, 0, 1, 1, 0, 0],
152
+ [0, 0, 1, 1, 1, 0],
153
+ [0, 0, 0, 0, 0, 1]
154
+ ],
155
+ [
156
+ [1, 0, 0, 0, 0, 0],
157
+ [1, 1, 0, 0, 0, 0],
158
+ [1, 1, 1, 0, 0, 0],
159
+ [0, 0, 0, 1, 0, 0],
160
+ [0, 0, 0, 1, 1, 0],
161
+ [0, 0, 0, 0, 0, 1]
162
+ ],
163
+ [
164
+ [1, 0, 0, 0, 0, 0],
165
+ [1, 1, 0, 0, 0, 0],
166
+ [1, 1, 1, 0, 0, 0],
167
+ [1, 1, 1, 1, 0, 0],
168
+ [1, 1, 1, 1, 1, 0],
169
+ [1, 1, 1, 1, 1, 1]
170
+ ]
171
+ ]
172
+ ```.
173
+ (The description above is taken verbatim from https://github.com/Dao-AILab/flash-attention/blob/9356a1c0389660d7e231ff3163c1ac17d9e3824a/flash_attn/bert_padding.py#L125 .)
174
+ """
175
+ attention_mask_in_length = None
176
+ if sequence_id is not None and attn_uses_sequence_id and (attn_impl == "flash"):
177
+ if (
178
+ attention_mask is not None
179
+ and attention_mask[:, 0].sum() != attention_mask.shape[0]
180
+ ):
181
+ raise NotImplementedError(
182
+ "Left padding is not supported with flash attention when attn_uses_sequence_id is set to True."
183
+ )
184
+ if S != sequence_id.shape[-1]:
185
+ raise ValueError(
186
+ f"Sequence length ({S}) does not match length of sequences in sequence_id ({sequence_id.shape[-1]})."
187
+ )
188
+ if attention_mask is not None:
189
+ sequence_id = sequence_id.masked_fill(~attention_mask, 0)
190
+ attention_mask_in_length = torch.nn.functional.one_hot(sequence_id)
191
+ if attention_mask is not None:
192
+ attention_mask_in_length = attention_mask_in_length.masked_fill(
193
+ ~attention_mask.unsqueeze(-1), 0
194
+ )
195
+ attention_mask_in_length = attention_mask_in_length.sum(dim=1)
196
+ attention_mask_in_length = torch.nn.functional.pad(
197
+ attention_mask_in_length,
198
+ (0, S - attention_mask_in_length.shape[-1]),
199
+ mode="constant",
200
+ value=0,
201
+ )
202
+ return attention_mask_in_length
203
+
204
+
205
+ def gen_flash_attn_padding_info(
206
+ bsz: int,
207
+ S: int,
208
+ past_key_len: int,
209
+ device: torch.device,
210
+ attention_mask_in_length: Optional[torch.Tensor] = None,
211
+ attention_mask: Optional[torch.Tensor] = None,
212
+ ):
213
+ flash_attn_padding_info = {}
214
+ if attention_mask_in_length is None:
215
+ key_padding_mask = attention_mask
216
+ if key_padding_mask is None:
217
+ key_padding_mask = torch.ones(
218
+ (bsz, past_key_len + S), dtype=torch.bool, device=device
219
+ )
220
+ query_padding_mask = key_padding_mask[:, -S:]
221
+ unpadding_function = bert_padding.unpad_input
222
+ else:
223
+ key_padding_mask = attention_mask_in_length
224
+ query_padding_mask = attention_mask_in_length
225
+ unpadding_function = bert_padding.unpad_input_for_concatenated_sequences
226
+ (_, indices_q, cu_seqlens_q, max_seqlen_q) = unpadding_function(
227
+ torch.empty(bsz, S, 1, device=device), query_padding_mask
228
+ )
229
+ (_, indices_k, cu_seqlens_k, max_seqlen_k) = unpadding_function(
230
+ torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask
231
+ )
232
+ (_, indices_v, _, _) = unpadding_function(
233
+ torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask
234
+ )
235
+ flash_attn_padding_info["indices_q"] = indices_q
236
+ flash_attn_padding_info["indices_k"] = indices_k
237
+ flash_attn_padding_info["indices_v"] = indices_v
238
+ flash_attn_padding_info["cu_seqlens_q"] = cu_seqlens_q
239
+ flash_attn_padding_info["cu_seqlens_k"] = cu_seqlens_k
240
+ flash_attn_padding_info["max_seqlen_q"] = max_seqlen_q
241
+ flash_attn_padding_info["max_seqlen_k"] = max_seqlen_k
242
+ return flash_attn_padding_info
243
+
244
+
245
+ def apply_sequence_id(
246
+ attn_bias: torch.Tensor, sequence_id: torch.LongTensor, max_seq_len: int
247
+ ) -> torch.Tensor:
248
+ seq_len = sequence_id.shape[-1]
249
+ if seq_len > max_seq_len:
250
+ raise ValueError(
251
+ f"sequence_id sequence length cannot exceed max_seq_len={max_seq_len}"
252
+ )
253
+ attn_bias = attn_bias[..., :seq_len, :seq_len]
254
+ cannot_attend = torch.logical_not(
255
+ torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))
256
+ ).unsqueeze(1)
257
+ min_val = torch.finfo(attn_bias.dtype).min
258
+ attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
259
+ return attn_bias
260
+
261
+
262
+ class MPTPreTrainedModel(PreTrainedModel):
263
+ config_class = MPTConfig
264
+ base_model_prefix = "model"
265
+ _no_split_modules = ["MPTBlock"]
266
+ _supports_flash_attn_2 = True
267
+ supports_gradient_checkpointing = True
268
+
269
+
270
+ def _fsdp_wrap_fn(self: Union[MPTModel, MPTForCausalLM], module: nn.Module) -> bool:
271
+ return isinstance(module, MPTBlock)
272
+
273
+
274
+ class MPTModel(MPTPreTrainedModel):
275
+
276
+ def __init__(self, config: MPTConfig):
277
+ config._validate_config()
278
+ super().__init__(config)
279
+ self.gradient_checkpointing = False
280
+ self.attn_impl = config.attn_config["attn_impl"]
281
+ self.prefix_lm = config.attn_config["prefix_lm"]
282
+ self.attn_uses_sequence_id = config.attn_config["attn_uses_sequence_id"]
283
+ self.alibi = config.attn_config["alibi"]
284
+ self.alibi_bias_max = config.attn_config["alibi_bias_max"]
285
+ self.learned_pos_emb = config.learned_pos_emb
286
+ if config.init_device == "mixed":
287
+ if dist.get_local_rank() == 0:
288
+ config.init_device = "cpu"
289
+ else:
290
+ config.init_device = "meta"
291
+ if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
292
+ norm_options = " | ".join(NORM_CLASS_REGISTRY.keys())
293
+ raise NotImplementedError(
294
+ f"Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options})."
295
+ )
296
+ norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
297
+ self.embedding_fraction = config.embedding_fraction
298
+ self.wte = SharedEmbedding(
299
+ config.vocab_size, config.d_model, device=config.init_device
300
+ )
301
+ if self.learned_pos_emb:
302
+ self.wpe = torch.nn.Embedding(
303
+ config.max_seq_len, config.d_model, device=config.init_device
304
+ )
305
+ self.emb_drop = nn.Dropout(config.emb_pdrop)
306
+ self.blocks = nn.ModuleList(
307
+ [
308
+ MPTBlock(device=config.init_device, **config.to_dict())
309
+ for _ in range(config.n_layers)
310
+ ]
311
+ )
312
+ self.norm_f = norm_class(config.d_model, device=config.init_device)
313
+ self.rope = config.attn_config["rope"]
314
+ self.rope_impl = None
315
+ if self.rope:
316
+ self.rope_impl = config.attn_config["rope_impl"]
317
+ self.rotary_embedding = gen_rotary_embedding(
318
+ rope_head_dim=config.d_model // config.n_heads,
319
+ rope_impl=self.rope_impl,
320
+ rope_theta=config.attn_config["rope_theta"],
321
+ rope_dail_config=config.attn_config["rope_dail_config"],
322
+ rope_hf_config=config.attn_config["rope_hf_config"],
323
+ max_seq_len=self.config.max_seq_len,
324
+ )
325
+ if config.init_device != "meta":
326
+ log.info(
327
+ f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.'
328
+ )
329
+ self.apply(self.param_init_fn)
330
+ self.is_causal = not self.prefix_lm
331
+ self._attn_bias_initialized = False
332
+ self.attn_bias = None
333
+ self.attn_bias_shape = attn_bias_shape(
334
+ self.attn_impl,
335
+ config.n_heads,
336
+ config.max_seq_len,
337
+ self.alibi,
338
+ prefix_lm=self.prefix_lm,
339
+ causal=self.is_causal,
340
+ use_sequence_id=self.attn_uses_sequence_id,
341
+ )
342
+ if config.no_bias:
343
+ for module in self.modules():
344
+ if hasattr(module, "bias") and isinstance(module.bias, nn.Parameter):
345
+ log.info(f"Removing bias from module={module!r}.")
346
+ module.register_parameter("bias", None)
347
+ if hasattr(module, "use_bias"):
348
+ log.info(f"Setting use_bias=False for module={module!r}.")
349
+ module.use_bias = False
350
+ log.debug(self)
351
+ log.debug(f"Using {self.config.init_config['name']} initialization.")
352
+
353
+ def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]:
354
+ return self.wte
355
+
356
+ def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
357
+ self.wte = value
358
+
359
+ @torch.no_grad()
360
+ def _attn_bias(
361
+ self,
362
+ device: torch.device,
363
+ dtype: torch.dtype,
364
+ attention_mask: Optional[torch.ByteTensor] = None,
365
+ prefix_mask: Optional[torch.ByteTensor] = None,
366
+ sequence_id: Optional[torch.LongTensor] = None,
367
+ ) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]:
368
+ if not self._attn_bias_initialized:
369
+ if self.attn_bias_shape:
370
+ self.attn_bias = torch.zeros(
371
+ self.attn_bias_shape, device=device, dtype=dtype
372
+ )
373
+ self.attn_bias = build_attn_bias(
374
+ self.attn_impl,
375
+ self.attn_bias,
376
+ self.config.n_heads,
377
+ self.config.max_seq_len,
378
+ causal=self.is_causal,
379
+ alibi=self.alibi,
380
+ alibi_bias_max=self.alibi_bias_max,
381
+ )
382
+ self._attn_bias_initialized = True
383
+ if self.attn_impl == "flash":
384
+ return (self.attn_bias, attention_mask)
385
+ if self.attn_bias is not None:
386
+ self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
387
+ attn_bias = self.attn_bias
388
+ if self.prefix_lm:
389
+ assert isinstance(attn_bias, torch.Tensor)
390
+ assert isinstance(prefix_mask, torch.Tensor)
391
+ attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
392
+ if self.attn_uses_sequence_id and sequence_id is not None:
393
+ assert isinstance(attn_bias, torch.Tensor)
394
+ attn_bias = apply_sequence_id(
395
+ attn_bias, sequence_id, self.config.max_seq_len
396
+ )
397
+ if attention_mask is not None:
398
+ s_k = attention_mask.shape[-1]
399
+ if attn_bias is None:
400
+ attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
401
+ else:
402
+ _s_k = max(0, attn_bias.size(-1) - s_k)
403
+ attn_bias = attn_bias[:, :, :, _s_k:]
404
+ if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
405
+ raise ValueError(
406
+ f"attention_mask shape={attention_mask.shape} "
407
+ + f"and prefix_mask shape={prefix_mask.shape} are not equal."
408
+ )
409
+ min_val = torch.finfo(attn_bias.dtype).min
410
+ attn_bias = attn_bias.masked_fill(
411
+ ~attention_mask.view(-1, 1, 1, s_k), min_val
412
+ )
413
+ return (attn_bias, attention_mask)
414
+
415
+ def _apply_prefix_mask(
416
+ self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor
417
+ ) -> torch.Tensor:
418
+ (s_k, s_q) = attn_bias.shape[-2:]
419
+ if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
420
+ raise ValueError(
421
+ "attn_bias does not match the expected shape. "
422
+ + f"The last two dimensions should both be {self.config.max_length} "
423
+ + f"but are {s_k} and {s_q}."
424
+ )
425
+ seq_len = prefix_mask.shape[-1]
426
+ if seq_len > self.config.max_seq_len:
427
+ raise ValueError(
428
+ f"prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}"
429
+ )
430
+ attn_bias = attn_bias[..., :seq_len, :seq_len]
431
+ causal = torch.tril(
432
+ torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)
433
+ ).view(1, 1, seq_len, seq_len)
434
+ prefix = prefix_mask.view(-1, 1, 1, seq_len)
435
+ cannot_attend = ~torch.logical_or(causal, prefix.bool())
436
+ min_val = torch.finfo(attn_bias.dtype).min
437
+ attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
438
+ return attn_bias
439
+
440
+ def forward(
441
+ self,
442
+ input_ids: Optional[torch.LongTensor] = None,
443
+ past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
444
+ attention_mask: Optional[torch.ByteTensor] = None,
445
+ prefix_mask: Optional[torch.ByteTensor] = None,
446
+ sequence_id: Optional[torch.LongTensor] = None,
447
+ return_dict: Optional[bool] = None,
448
+ output_attentions: Optional[bool] = None,
449
+ output_hidden_states: Optional[bool] = None,
450
+ use_cache: Optional[bool] = None,
451
+ inputs_embeds: Optional[torch.Tensor] = None,
452
+ ) -> BaseModelOutputWithPast:
453
+ return_dict = (
454
+ return_dict if return_dict is not None else self.config.return_dict
455
+ )
456
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
457
+ if attention_mask is not None:
458
+ attention_mask = attention_mask.bool()
459
+ if prefix_mask is not None:
460
+ prefix_mask = prefix_mask.bool()
461
+ if not return_dict:
462
+ raise NotImplementedError(
463
+ "return_dict False is not implemented yet for MPT"
464
+ )
465
+ if output_attentions:
466
+ if self.attn_impl != "torch":
467
+ raise NotImplementedError(
468
+ "output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`."
469
+ )
470
+ if (
471
+ self.training
472
+ and attention_mask is not None
473
+ and (attention_mask[:, 0].sum() != attention_mask.shape[0])
474
+ ):
475
+ raise NotImplementedError(
476
+ "MPT does not support training with left padding."
477
+ )
478
+ if self.prefix_lm and prefix_mask is None:
479
+ raise ValueError(
480
+ "prefix_mask is a required argument when MPT is configured with prefix_lm=True."
481
+ )
482
+ if self.training:
483
+ if self.attn_uses_sequence_id and sequence_id is None:
484
+ raise ValueError(
485
+ "sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True "
486
+ + "and the model is in train mode."
487
+ )
488
+ elif self.attn_uses_sequence_id is False and sequence_id is not None:
489
+ warnings.warn(
490
+ "MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. "
491
+ + "This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True."
492
+ )
493
+
494
+ if self.gradient_checkpointing and self.training and use_cache:
495
+ warnings.warn(
496
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
497
+ )
498
+ use_cache = False
499
+
500
+ if input_ids is not None and inputs_embeds is not None:
501
+ raise ValueError("You cannot specify both input_ids and inputs_embeds.")
502
+ elif input_ids is not None:
503
+ bsz = input_ids.size(0)
504
+ S = input_ids.size(1)
505
+ x = self.wte(input_ids)
506
+ input_device = input_ids.device
507
+ elif inputs_embeds is not None:
508
+ bsz = inputs_embeds.size(0)
509
+ S = inputs_embeds.size(1)
510
+ x = inputs_embeds
511
+ input_device = inputs_embeds.device
512
+ else:
513
+ raise ValueError("You must specify input_ids or inputs_embeds")
514
+ assert (
515
+ S <= self.config.max_seq_len
516
+ ), f"Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}"
517
+ rotary_emb_w_meta_info = None
518
+ past_position = 0
519
+ if past_key_values is not None:
520
+ if len(past_key_values) != self.config.n_layers:
521
+ raise ValueError(
522
+ f"past_key_values must provide a past_key_value for each attention "
523
+ + f"layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r})."
524
+ )
525
+ past_position = past_key_values[0][0].size(1)
526
+ if self.attn_impl == "torch":
527
+ past_position = past_key_values[0][0].size(3)
528
+ if self.learned_pos_emb or self.rope:
529
+ if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
530
+ raise ValueError(
531
+ f"Cannot forward input with past sequence length {past_position} and current sequence length "
532
+ + f"{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}."
533
+ )
534
+ if self.learned_pos_emb or (self.rope and self.rope_impl == "hf"):
535
+ pos = torch.arange(
536
+ past_position,
537
+ S + past_position,
538
+ dtype=torch.long,
539
+ device=input_device,
540
+ ).unsqueeze(0)
541
+ if attention_mask is not None:
542
+ pos = torch.clamp(
543
+ pos
544
+ - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[
545
+ :, past_position:
546
+ ],
547
+ min=0,
548
+ )
549
+ if self.learned_pos_emb:
550
+ x = x + self.wpe(pos)
551
+ elif self.rope and self.rope_impl == "hf":
552
+ rotary_emb_w_meta_info = {
553
+ "impl": self.rope_impl,
554
+ "rotary_emb": self.rotary_embedding,
555
+ "offset_info": pos,
556
+ "seq_len": S + past_position,
557
+ }
558
+ elif self.rope and self.rope_impl == "dail":
559
+ rotary_emb_w_meta_info = {
560
+ "impl": self.rope_impl,
561
+ "rotary_emb": self.rotary_embedding,
562
+ "offset_info": past_position,
563
+ "seq_len": S + past_position,
564
+ }
565
+ if self.embedding_fraction == 1:
566
+ x = self.emb_drop(x)
567
+ else:
568
+ x_shrunk = x * self.embedding_fraction + x.detach() * (
569
+ 1 - self.embedding_fraction
570
+ )
571
+ assert isinstance(self.emb_drop, nn.Module)
572
+ x = self.emb_drop(x_shrunk)
573
+ (attn_bias, attention_mask) = self._attn_bias(
574
+ device=x.device,
575
+ dtype=torch.float32,
576
+ attention_mask=attention_mask,
577
+ prefix_mask=prefix_mask,
578
+ sequence_id=sequence_id,
579
+ )
580
+ attention_mask_in_length = gen_attention_mask_in_length(
581
+ sequence_id=sequence_id,
582
+ S=S,
583
+ attn_uses_sequence_id=self.attn_uses_sequence_id,
584
+ attn_impl=self.attn_impl,
585
+ attention_mask=attention_mask,
586
+ )
587
+ alibi_slopes = None
588
+ if self.alibi and self.attn_impl == "flash":
589
+ alibi_slopes = gen_slopes(
590
+ n_heads=self.config.n_heads,
591
+ alibi_bias_max=self.alibi_bias_max,
592
+ device=x.device,
593
+ return_1d=True,
594
+ )
595
+ presents = () if use_cache else None
596
+ if use_cache and past_key_values is None:
597
+ past_key_values = [() for _ in range(self.config.n_layers)]
598
+ all_hidden_states = () if output_hidden_states else None
599
+ all_self_attns = () if output_attentions else None
600
+ flash_attn_padding_info = {}
601
+ if self.attn_impl == "flash":
602
+ flash_attn_padding_info = gen_flash_attn_padding_info(
603
+ bsz,
604
+ S,
605
+ past_position,
606
+ x.device,
607
+ attention_mask_in_length,
608
+ attention_mask,
609
+ )
610
+ for b_idx, block in enumerate(self.blocks):
611
+ if output_hidden_states:
612
+ assert all_hidden_states is not None
613
+ all_hidden_states = all_hidden_states + (x,)
614
+ past_key_value = (
615
+ past_key_values[b_idx] if past_key_values is not None else None
616
+ )
617
+ if self.gradient_checkpointing and self.training:
618
+ (x, attn_weights, present) = self._gradient_checkpointing_func(
619
+ block.__call__,
620
+ x,
621
+ past_key_value,
622
+ attn_bias,
623
+ rotary_emb_w_meta_info,
624
+ attention_mask,
625
+ self.is_causal,
626
+ bool(output_attentions),
627
+ alibi_slopes,
628
+ flash_attn_padding_info,
629
+ )
630
+ else:
631
+ (x, attn_weights, present) = block(
632
+ x,
633
+ past_key_value=past_key_value,
634
+ attn_bias=attn_bias,
635
+ rotary_emb_w_meta_info=rotary_emb_w_meta_info,
636
+ attention_mask=attention_mask,
637
+ is_causal=self.is_causal,
638
+ output_attentions=bool(output_attentions),
639
+ alibi_slopes=alibi_slopes,
640
+ flash_attn_padding_info=flash_attn_padding_info,
641
+ )
642
+ if presents is not None:
643
+ presents += (present,)
644
+ if output_attentions:
645
+ assert all_self_attns is not None
646
+ all_self_attns = all_self_attns + (attn_weights,)
647
+ x = self.norm_f(x)
648
+ if output_hidden_states:
649
+ assert all_hidden_states is not None
650
+ all_hidden_states = all_hidden_states + (x,)
651
+ return BaseModelOutputWithPast(
652
+ last_hidden_state=x,
653
+ past_key_values=presents,
654
+ hidden_states=all_hidden_states,
655
+ attentions=all_self_attns,
656
+ )
657
+
658
+ def param_init_fn(self, module: nn.Module) -> None:
659
+ init_fn_name = self.config.init_config["name"]
660
+ MODEL_INIT_REGISTRY[init_fn_name](
661
+ module=module,
662
+ n_layers=self.config.n_layers,
663
+ d_model=self.config.d_model,
664
+ **self.config.init_config,
665
+ )
666
+
667
+ def fsdp_wrap_fn(self, module: nn.Module) -> bool:
668
+ return _fsdp_wrap_fn(self, module)
669
+
670
+ def activation_checkpointing_fn(self, module: nn.Module) -> bool:
671
+ return isinstance(module, MPTBlock)
672
+
673
+
674
+ class MPTForCausalLM(MPTPreTrainedModel):
675
+
676
+ def __init__(self, config: MPTConfig):
677
+ super().__init__(config)
678
+ log.info(f"Instantiating an MPTForCausalLM model from {__file__}")
679
+ self.transformer: MPTModel = MPTModel(config)
680
+ self.lm_head = None
681
+ if not config.tie_word_embeddings:
682
+ self.lm_head = nn.Linear(
683
+ config.d_model, config.vocab_size, bias=False, device=config.init_device
684
+ )
685
+ self.lm_head._fsdp_wrap = True
686
+ for child in self.transformer.children():
687
+ if isinstance(child, torch.nn.ModuleList):
688
+ continue
689
+ if isinstance(child, torch.nn.Module):
690
+ child._fsdp_wrap = True
691
+ self.logit_scale = None
692
+ if config.logit_scale is not None:
693
+ logit_scale = config.logit_scale
694
+ if isinstance(logit_scale, str):
695
+ if logit_scale == "inv_sqrt_d_model":
696
+ logit_scale = 1 / math.sqrt(config.d_model)
697
+ else:
698
+ raise ValueError(
699
+ f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
700
+ )
701
+ self.logit_scale = logit_scale
702
+
703
+ def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]:
704
+ return self.transformer.get_input_embeddings()
705
+
706
+ def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
707
+ self.transformer.set_input_embeddings(value)
708
+
709
+ def get_output_embeddings(self) -> Union[SharedEmbedding, nn.Embedding, nn.Linear]:
710
+ if self.lm_head is not None:
711
+ return self.lm_head
712
+ return self.transformer.get_input_embeddings()
713
+
714
+ def set_output_embeddings(
715
+ self, new_embeddings: Union[SharedEmbedding, nn.Embedding, nn.Linear]
716
+ ) -> None:
717
+ if self.lm_head is not None:
718
+ self.lm_head = new_embeddings
719
+ else:
720
+ if not isinstance(new_embeddings, (SharedEmbedding, nn.Embedding)):
721
+ raise ValueError(
722
+ "new_embeddings must be an instance of SharedEmbedding "
723
+ + f"or nn.Embedding, but got {type(new_embeddings)}."
724
+ )
725
+ warnings.warn(
726
+ "Using `set_output_embeddings` to set the embedding layer of "
727
+ + "MPTForCausalLM with tied weights. Given weights are tied, "
728
+ + "using `set_input_embeddings` is recommended over using "
729
+ + "`set_output_embeddings`."
730
+ )
731
+ self.transformer.set_input_embeddings(new_embeddings)
732
+
733
+ def tie_weights(self) -> None:
734
+ self.lm_head = None
735
+
736
+ def set_decoder(self, decoder: MPTModel) -> None:
737
+ self.transformer = decoder
738
+
739
+ def get_decoder(self) -> MPTModel:
740
+ return self.transformer
741
+
742
+ def forward(
743
+ self,
744
+ input_ids: Optional[torch.LongTensor] = None,
745
+ past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
746
+ attention_mask: Optional[torch.ByteTensor] = None,
747
+ prefix_mask: Optional[torch.ByteTensor] = None,
748
+ sequence_id: Optional[torch.LongTensor] = None,
749
+ labels: Optional[torch.LongTensor] = None,
750
+ return_dict: Optional[bool] = None,
751
+ output_attentions: Optional[bool] = None,
752
+ output_hidden_states: Optional[bool] = None,
753
+ use_cache: Optional[bool] = None,
754
+ inputs_embeds: Optional[torch.FloatTensor] = None,
755
+ ) -> CausalLMOutputWithPast:
756
+ return_dict = (
757
+ return_dict if return_dict is not None else self.config.return_dict
758
+ )
759
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
760
+ outputs = self.transformer(
761
+ input_ids=input_ids,
762
+ past_key_values=past_key_values,
763
+ attention_mask=attention_mask,
764
+ prefix_mask=prefix_mask,
765
+ sequence_id=sequence_id,
766
+ return_dict=return_dict,
767
+ output_attentions=output_attentions,
768
+ output_hidden_states=output_hidden_states,
769
+ use_cache=use_cache,
770
+ inputs_embeds=inputs_embeds,
771
+ )
772
+ if self.lm_head is not None:
773
+ logits = self.lm_head(outputs.last_hidden_state)
774
+ else:
775
+ out = outputs.last_hidden_state
776
+ out = out.to(self.transformer.wte.weight.device)
777
+ logits = self.transformer.wte(out, True)
778
+ if self.logit_scale is not None:
779
+ if self.logit_scale == 0:
780
+ warnings.warn(
781
+ f"Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs."
782
+ )
783
+ logits *= self.logit_scale
784
+ loss = None
785
+ if labels is not None:
786
+ _labels = torch.roll(labels, shifts=-1)
787
+ _labels[:, -1] = -100
788
+ loss = F.cross_entropy(
789
+ logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1)
790
+ )
791
+ return CausalLMOutputWithPast(
792
+ loss=loss,
793
+ logits=logits,
794
+ past_key_values=outputs.past_key_values,
795
+ hidden_states=outputs.hidden_states,
796
+ attentions=outputs.attentions,
797
+ )
798
+
799
+ def param_init_fn(self, module: nn.Module) -> None:
800
+ init_fn_name = self.config.init_config["name"]
801
+ MODEL_INIT_REGISTRY[init_fn_name](
802
+ module=module,
803
+ n_layers=self.config.n_layers,
804
+ d_model=self.config.d_model,
805
+ **self.config.init_config,
806
+ )
807
+
808
+ def fsdp_wrap_fn(self, module: nn.Module) -> bool:
809
+ return _fsdp_wrap_fn(self, module)
810
+
811
+ def activation_checkpointing_fn(self, module: nn.Module) -> bool:
812
+ act_ckpt_list = getattr(
813
+ self.config, "activation_checkpointing_target", None
814
+ ) or ["MPTBlock"]
815
+ if isinstance(act_ckpt_list, str):
816
+ act_ckpt_list = [act_ckpt_list]
817
+ elif not isinstance(act_ckpt_list, list):
818
+ raise ValueError(
819
+ f"activation_checkpointing_target must be either a single string or a list, but got {type(act_ckpt_list)}"
820
+ )
821
+ if "MPTBlock" in act_ckpt_list or "mptblock" in act_ckpt_list:
822
+ if len(act_ckpt_list) > 1:
823
+ log.info(
824
+ "Activation checkpointing MPTBlock only (ignoring other sub-block modules specified in activation_checkpointing_target)."
825
+ )
826
+ return isinstance(module, MPTBlock)
827
+ mod_types = ()
828
+ for mod_name in act_ckpt_list:
829
+ if mod_name.lower() == "mptblock":
830
+ mod_types += (MPTBlock,)
831
+ elif mod_name in ATTN_CLASS_REGISTRY:
832
+ mod_types += (ATTN_CLASS_REGISTRY[mod_name],)
833
+ elif mod_name in FFN_CLASS_REGISTRY:
834
+ mod_types += (FFN_CLASS_REGISTRY[mod_name],)
835
+ elif mod_name in NORM_CLASS_REGISTRY:
836
+ mod_types += (NORM_CLASS_REGISTRY[mod_name],)
837
+ else:
838
+ msg = ", ".join(
839
+ list(ATTN_CLASS_REGISTRY.keys())
840
+ + list(FFN_CLASS_REGISTRY.keys())
841
+ + list(NORM_CLASS_REGISTRY.keys())
842
+ + ["MPTBlock"]
843
+ )
844
+ raise ValueError(
845
+ f"{mod_name} (specified in activation_checkpointing_target) is not a recognized option out of available options {msg}."
846
+ )
847
+ return isinstance(module, mod_types)
848
+
849
+ def prepare_inputs_for_generation(
850
+ self,
851
+ input_ids: torch.Tensor,
852
+ past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
853
+ inputs_embeds: Optional[torch.Tensor] = None,
854
+ **kwargs: Any,
855
+ ) -> Dict[str, Any]:
856
+ attention_mask = kwargs["attention_mask"].bool()
857
+ if attention_mask[:, -1].sum() != attention_mask.shape[0]:
858
+ raise NotImplementedError(
859
+ "MPT does not support generation with right padding."
860
+ )
861
+ if self.transformer.attn_uses_sequence_id and self.training:
862
+ sequence_id = torch.zeros_like(input_ids[:1])
863
+ else:
864
+ sequence_id = None
865
+ if past_key_values is not None:
866
+ input_ids = input_ids[:, -1].unsqueeze(-1)
867
+ if self.transformer.prefix_lm:
868
+ prefix_mask = torch.ones_like(attention_mask)
869
+ if kwargs.get("use_cache") == False:
870
+ raise NotImplementedError(
871
+ "MPT with prefix_lm=True does not support use_cache=False."
872
+ )
873
+ else:
874
+ prefix_mask = None
875
+ if inputs_embeds is not None and past_key_values is None:
876
+ model_inputs = {"inputs_embeds": inputs_embeds}
877
+ else:
878
+ model_inputs = {"input_ids": input_ids}
879
+ model_inputs.update(
880
+ {
881
+ "attention_mask": attention_mask,
882
+ "prefix_mask": prefix_mask,
883
+ "sequence_id": sequence_id,
884
+ "past_key_values": past_key_values,
885
+ "use_cache": kwargs.get("use_cache", True),
886
+ }
887
+ )
888
+ return model_inputs
889
+
890
+ @staticmethod
891
+ def _reorder_cache(
892
+ past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
893
+ beam_idx: torch.LongTensor,
894
+ ) -> List[Tuple[torch.Tensor, ...]]:
895
+ """Used by HuggingFace generate when using beam search with kv-caching.
896
+
897
+ See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
898
+ for an example in transformers.
899
+ """
900
+ reordered_past = []
901
+ for layer_past in past_key_values:
902
+ reordered_past += [
903
+ tuple(
904
+ (past_state.index_select(0, beam_idx) for past_state in layer_past)
905
+ )
906
+ ]
907
+ return reordered_past
norm.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Optional, Type, Union
2
+ import torch
3
+
4
+
5
+ def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor:
6
+ if torch.is_autocast_enabled():
7
+ if tensor.device.type == "cuda":
8
+ dtype = torch.get_autocast_gpu_dtype()
9
+ elif tensor.device.type == "cpu":
10
+ dtype = torch.get_autocast_cpu_dtype()
11
+ else:
12
+ raise NotImplementedError()
13
+ return tensor.to(dtype=dtype)
14
+ return tensor
15
+
16
+
17
+ class LPLayerNorm(torch.nn.LayerNorm):
18
+
19
+ def __init__(
20
+ self,
21
+ normalized_shape: Union[int, List[int], torch.Size],
22
+ eps: float = 1e-05,
23
+ elementwise_affine: bool = True,
24
+ device: Optional[torch.device] = None,
25
+ dtype: Optional[torch.dtype] = None,
26
+ ):
27
+ super().__init__(
28
+ normalized_shape=normalized_shape,
29
+ eps=eps,
30
+ elementwise_affine=elementwise_affine,
31
+ device=device,
32
+ dtype=dtype,
33
+ )
34
+
35
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
36
+ module_device = x.device
37
+ downcast_x = _cast_if_autocast_enabled(x)
38
+ downcast_weight = (
39
+ _cast_if_autocast_enabled(self.weight)
40
+ if self.weight is not None
41
+ else self.weight
42
+ )
43
+ downcast_bias = (
44
+ _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
45
+ )
46
+ with torch.autocast(enabled=False, device_type=module_device.type):
47
+ return torch.nn.functional.layer_norm(
48
+ downcast_x,
49
+ self.normalized_shape,
50
+ downcast_weight,
51
+ downcast_bias,
52
+ self.eps,
53
+ )
54
+
55
+
56
+ def rms_norm(
57
+ x: torch.Tensor, weight: Optional[torch.Tensor] = None, eps: float = 1e-05
58
+ ) -> torch.Tensor:
59
+ output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
60
+ if weight is not None:
61
+ return output * weight
62
+ return output
63
+
64
+
65
+ class RMSNorm(torch.nn.Module):
66
+
67
+ def __init__(
68
+ self,
69
+ normalized_shape: Union[int, List[int], torch.Size],
70
+ eps: float = 1e-05,
71
+ weight: bool = True,
72
+ dtype: Optional[torch.dtype] = None,
73
+ device: Optional[torch.device] = None,
74
+ ):
75
+ super().__init__()
76
+ self.eps = eps
77
+ if weight:
78
+ self.weight = torch.nn.Parameter(
79
+ torch.ones(normalized_shape, dtype=dtype, device=device)
80
+ )
81
+ else:
82
+ self.register_parameter("weight", None)
83
+
84
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
85
+ return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
86
+
87
+
88
+ class LPRMSNorm(RMSNorm):
89
+
90
+ def __init__(
91
+ self,
92
+ normalized_shape: Union[int, List[int], torch.Size],
93
+ eps: float = 1e-05,
94
+ weight: bool = True,
95
+ dtype: Optional[torch.dtype] = None,
96
+ device: Optional[torch.device] = None,
97
+ ):
98
+ super().__init__(
99
+ normalized_shape=normalized_shape,
100
+ eps=eps,
101
+ weight=weight,
102
+ dtype=dtype,
103
+ device=device,
104
+ )
105
+
106
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
107
+ downcast_x = _cast_if_autocast_enabled(x)
108
+ downcast_weight = (
109
+ _cast_if_autocast_enabled(self.weight)
110
+ if self.weight is not None
111
+ else self.weight
112
+ )
113
+ with torch.autocast(enabled=False, device_type=x.device.type):
114
+ return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
115
+
116
+
117
+ NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = {
118
+ "layernorm": torch.nn.LayerNorm,
119
+ "low_precision_layernorm": LPLayerNorm,
120
+ "rmsnorm": RMSNorm,
121
+ "low_precision_rmsnorm": LPRMSNorm,
122
+ }
param_init_fns.py ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import warnings
3
+ from collections.abc import Sequence
4
+ from functools import partial
5
+ from typing import Any, Callable, Optional, Tuple, Union
6
+ import torch
7
+ from torch import nn
8
+ from .fc import FC_CLASS_REGISTRY
9
+ from .norm import NORM_CLASS_REGISTRY
10
+
11
+ try:
12
+ import transformer_engine.pytorch as te
13
+ except:
14
+ te = None
15
+
16
+
17
+ def torch_default_param_init_fn_(module: nn.Module, **kwargs: Any) -> None:
18
+ del kwargs
19
+ if hasattr(module, "reset_parameters") and isinstance(
20
+ module.reset_parameters, Callable
21
+ ):
22
+ module.reset_parameters()
23
+
24
+
25
+ def fused_init_helper_(module: nn.Module, init_fn_: Callable) -> None:
26
+ _fused = getattr(module, "_fused", None)
27
+ if _fused is None:
28
+ raise RuntimeError(f"Internal logic error")
29
+ assert isinstance(module.weight, torch.Tensor)
30
+ (dim, splits) = _fused
31
+ splits = (0, *splits, module.weight.size(dim))
32
+ for s, e in zip(splits[:-1], splits[1:]):
33
+ slice_indices = [slice(None)] * module.weight.ndim
34
+ slice_indices[dim] = slice(s, e)
35
+ init_fn_(module.weight[slice_indices])
36
+
37
+
38
+ def generic_param_init_fn_(
39
+ module: nn.Module,
40
+ init_fn_: Callable,
41
+ n_layers: int,
42
+ d_model: Optional[int] = None,
43
+ init_div_is_residual: Union[int, float, str, bool] = True,
44
+ emb_init_std: Optional[float] = None,
45
+ emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
46
+ **kwargs: Any,
47
+ ) -> None:
48
+ del kwargs
49
+ init_div_is_residual = init_div_is_residual
50
+ if init_div_is_residual is False:
51
+ div_is_residual = 1.0
52
+ elif init_div_is_residual is True:
53
+ div_is_residual = math.sqrt(2 * n_layers)
54
+ elif isinstance(init_div_is_residual, float) or isinstance(
55
+ init_div_is_residual, int
56
+ ):
57
+ div_is_residual = init_div_is_residual
58
+ elif init_div_is_residual.isnumeric():
59
+ div_is_residual = float(init_div_is_residual)
60
+ else:
61
+ div_is_residual = 1.0
62
+ raise ValueError(
63
+ f"Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}"
64
+ )
65
+ if isinstance(module, tuple(set(FC_CLASS_REGISTRY.values()))):
66
+ if hasattr(module, "_fused"):
67
+ fused_init_helper_(module, init_fn_)
68
+ else:
69
+ init_fn_(module.weight)
70
+ if module.bias is not None:
71
+ assert isinstance(module.bias, torch.Tensor)
72
+ torch.nn.init.zeros_(module.bias)
73
+ if init_div_is_residual is not False and getattr(module, "_is_residual", False):
74
+ with torch.no_grad():
75
+ module.weight.div_(div_is_residual)
76
+ elif isinstance(module, nn.Embedding):
77
+ if emb_init_std is not None:
78
+ std = emb_init_std
79
+ if std == 0:
80
+ warnings.warn(f"Embedding layer initialized to 0.")
81
+ emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
82
+ elif emb_init_uniform_lim is not None:
83
+ lim = emb_init_uniform_lim
84
+ if isinstance(lim, Sequence):
85
+ if len(lim) > 2:
86
+ raise ValueError(
87
+ f"Uniform init requires a min and a max limit. User input: {lim}."
88
+ )
89
+ if lim[0] == lim[1]:
90
+ warnings.warn(f"Embedding layer initialized to {lim[0]}.")
91
+ else:
92
+ if lim == 0:
93
+ warnings.warn(f"Embedding layer initialized to 0.")
94
+ lim = [-lim, lim]
95
+ (a, b) = lim
96
+ emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
97
+ else:
98
+ emb_init_fn_ = init_fn_
99
+ emb_init_fn_(module.weight)
100
+ elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
101
+ if hasattr(module, "weight") and isinstance(module.weight, torch.Tensor):
102
+ torch.nn.init.ones_(module.weight)
103
+ if hasattr(module, "bias") and isinstance(module.bias, torch.Tensor):
104
+ torch.nn.init.zeros_(module.bias)
105
+ elif isinstance(module, nn.MultiheadAttention):
106
+ if module._qkv_same_embed_dim:
107
+ assert module.in_proj_weight is not None
108
+ assert (
109
+ module.q_proj_weight is None
110
+ and module.k_proj_weight is None
111
+ and (module.v_proj_weight is None)
112
+ )
113
+ assert d_model is not None
114
+ _d = d_model
115
+ splits = (0, _d, 2 * _d, 3 * _d)
116
+ for s, e in zip(splits[:-1], splits[1:]):
117
+ init_fn_(module.in_proj_weight[s:e])
118
+ else:
119
+ assert (
120
+ module.q_proj_weight is not None
121
+ and module.k_proj_weight is not None
122
+ and (module.v_proj_weight is not None)
123
+ )
124
+ assert module.in_proj_weight is None
125
+ init_fn_(module.q_proj_weight)
126
+ init_fn_(module.k_proj_weight)
127
+ init_fn_(module.v_proj_weight)
128
+ if module.in_proj_bias is not None:
129
+ torch.nn.init.zeros_(module.in_proj_bias)
130
+ if module.bias_k is not None:
131
+ torch.nn.init.zeros_(module.bias_k)
132
+ if module.bias_v is not None:
133
+ torch.nn.init.zeros_(module.bias_v)
134
+ init_fn_(module.out_proj.weight)
135
+ if init_div_is_residual is not False and getattr(
136
+ module.out_proj, "_is_residual", False
137
+ ):
138
+ with torch.no_grad():
139
+ module.out_proj.weight.div_(div_is_residual)
140
+ if module.out_proj.bias is not None:
141
+ torch.nn.init.zeros_(module.out_proj.bias)
142
+ elif te is not None and isinstance(module, te.LayerNormMLP):
143
+ if isinstance(module.layer_norm_weight, torch.Tensor):
144
+ torch.nn.init.ones_(module.layer_norm_weight)
145
+ if isinstance(module.layer_norm_bias, torch.Tensor):
146
+ torch.nn.init.zeros_(module.layer_norm_bias)
147
+ init_fn_(module.fc1_weight)
148
+ if module.fc1_bias is not None:
149
+ assert isinstance(module.fc1_bias, torch.Tensor)
150
+ torch.nn.init.zeros_(module.fc1_bias)
151
+ init_fn_(module.fc2_weight)
152
+ if module.fc2_bias is not None:
153
+ assert isinstance(module.fc2_bias, torch.Tensor)
154
+ torch.nn.init.zeros_(module.fc2_bias)
155
+ with torch.no_grad():
156
+ module.fc2_weight.div_(div_is_residual)
157
+ else:
158
+ for _ in module.parameters(recurse=False):
159
+ raise NotImplementedError(
160
+ f"{module.__class__.__name__} parameters are not initialized by param_init_fn."
161
+ )
162
+
163
+
164
+ def _normal_init_(std: float, mean: float = 0.0) -> Callable:
165
+ return partial(torch.nn.init.normal_, mean=mean, std=std)
166
+
167
+
168
+ def _normal_param_init_fn_(
169
+ module: nn.Module,
170
+ std: float,
171
+ n_layers: int,
172
+ d_model: Optional[int] = None,
173
+ init_div_is_residual: Union[int, float, str, bool] = True,
174
+ emb_init_std: Optional[float] = None,
175
+ emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
176
+ **kwargs: Any,
177
+ ) -> None:
178
+ del kwargs
179
+ init_fn_ = _normal_init_(std=std)
180
+ generic_param_init_fn_(
181
+ module=module,
182
+ init_fn_=init_fn_,
183
+ d_model=d_model,
184
+ n_layers=n_layers,
185
+ init_div_is_residual=init_div_is_residual,
186
+ emb_init_std=emb_init_std,
187
+ emb_init_uniform_lim=emb_init_uniform_lim,
188
+ )
189
+
190
+
191
+ def baseline_param_init_fn_(
192
+ module: nn.Module,
193
+ init_std: Optional[float],
194
+ n_layers: int,
195
+ d_model: Optional[int] = None,
196
+ init_div_is_residual: Union[int, float, str, bool] = True,
197
+ emb_init_std: Optional[float] = None,
198
+ emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
199
+ **kwargs: Any,
200
+ ) -> None:
201
+ del kwargs
202
+ if init_std is None:
203
+ raise ValueError(
204
+ "You must set model.init_config['init_std'] to a float value to use the default initialization scheme."
205
+ )
206
+ _normal_param_init_fn_(
207
+ module=module,
208
+ std=init_std,
209
+ d_model=d_model,
210
+ n_layers=n_layers,
211
+ init_div_is_residual=init_div_is_residual,
212
+ emb_init_std=emb_init_std,
213
+ emb_init_uniform_lim=emb_init_uniform_lim,
214
+ )
215
+
216
+
217
+ def small_param_init_fn_(
218
+ module: nn.Module,
219
+ n_layers: int,
220
+ d_model: int,
221
+ init_div_is_residual: Union[int, float, str, bool] = True,
222
+ emb_init_std: Optional[float] = None,
223
+ emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
224
+ **kwargs: Any,
225
+ ) -> None:
226
+ del kwargs
227
+ std = math.sqrt(2 / (5 * d_model))
228
+ _normal_param_init_fn_(
229
+ module=module,
230
+ std=std,
231
+ d_model=d_model,
232
+ n_layers=n_layers,
233
+ init_div_is_residual=init_div_is_residual,
234
+ emb_init_std=emb_init_std,
235
+ emb_init_uniform_lim=emb_init_uniform_lim,
236
+ )
237
+
238
+
239
+ def neox_param_init_fn_(
240
+ module: nn.Module,
241
+ n_layers: int,
242
+ d_model: int,
243
+ emb_init_std: Optional[float] = None,
244
+ emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
245
+ **kwargs: Any,
246
+ ) -> None:
247
+ """From section 2.3.1 of GPT-NeoX-20B:
248
+
249
+ An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
250
+ see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
251
+ and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
252
+ """
253
+ del kwargs
254
+ residual_div = n_layers / math.sqrt(10)
255
+ small_param_init_fn_(
256
+ module=module,
257
+ d_model=d_model,
258
+ n_layers=n_layers,
259
+ init_div_is_residual=residual_div,
260
+ emb_init_std=emb_init_std,
261
+ emb_init_uniform_lim=emb_init_uniform_lim,
262
+ )
263
+
264
+
265
+ def kaiming_uniform_param_init_fn_(
266
+ module: nn.Module,
267
+ n_layers: int,
268
+ d_model: Optional[int] = None,
269
+ init_div_is_residual: Union[int, float, str, bool] = True,
270
+ emb_init_std: Optional[float] = None,
271
+ emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
272
+ init_gain: float = 0,
273
+ fan_mode: str = "fan_in",
274
+ init_nonlinearity: str = "leaky_relu",
275
+ **kwargs: Any,
276
+ ) -> None:
277
+ del kwargs
278
+ kaiming_uniform_ = partial(
279
+ nn.init.kaiming_uniform_,
280
+ a=init_gain,
281
+ mode=fan_mode,
282
+ nonlinearity=init_nonlinearity,
283
+ )
284
+ generic_param_init_fn_(
285
+ module=module,
286
+ init_fn_=kaiming_uniform_,
287
+ d_model=d_model,
288
+ n_layers=n_layers,
289
+ init_div_is_residual=init_div_is_residual,
290
+ emb_init_std=emb_init_std,
291
+ emb_init_uniform_lim=emb_init_uniform_lim,
292
+ )
293
+
294
+
295
+ def kaiming_normal_param_init_fn_(
296
+ module: nn.Module,
297
+ n_layers: int,
298
+ d_model: Optional[int] = None,
299
+ init_div_is_residual: Union[int, float, str, bool] = True,
300
+ emb_init_std: Optional[float] = None,
301
+ emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
302
+ init_gain: float = 0,
303
+ fan_mode: str = "fan_in",
304
+ init_nonlinearity: str = "leaky_relu",
305
+ **kwargs: Any,
306
+ ) -> None:
307
+ del kwargs
308
+ kaiming_normal_ = partial(
309
+ torch.nn.init.kaiming_normal_,
310
+ a=init_gain,
311
+ mode=fan_mode,
312
+ nonlinearity=init_nonlinearity,
313
+ )
314
+ generic_param_init_fn_(
315
+ module=module,
316
+ init_fn_=kaiming_normal_,
317
+ d_model=d_model,
318
+ n_layers=n_layers,
319
+ init_div_is_residual=init_div_is_residual,
320
+ emb_init_std=emb_init_std,
321
+ emb_init_uniform_lim=emb_init_uniform_lim,
322
+ )
323
+
324
+
325
+ def xavier_uniform_param_init_fn_(
326
+ module: nn.Module,
327
+ n_layers: int,
328
+ d_model: Optional[int] = None,
329
+ init_div_is_residual: Union[int, float, str, bool] = True,
330
+ emb_init_std: Optional[float] = None,
331
+ emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
332
+ init_gain: float = 0,
333
+ **kwargs: Any,
334
+ ) -> None:
335
+ del kwargs
336
+ xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
337
+ generic_param_init_fn_(
338
+ module=module,
339
+ init_fn_=xavier_uniform_,
340
+ d_model=d_model,
341
+ n_layers=n_layers,
342
+ init_div_is_residual=init_div_is_residual,
343
+ emb_init_std=emb_init_std,
344
+ emb_init_uniform_lim=emb_init_uniform_lim,
345
+ )
346
+
347
+
348
+ def xavier_normal_param_init_fn_(
349
+ module: nn.Module,
350
+ n_layers: int,
351
+ d_model: Optional[int] = None,
352
+ init_div_is_residual: Union[int, float, str, bool] = True,
353
+ emb_init_std: Optional[float] = None,
354
+ emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
355
+ init_gain: float = 0,
356
+ **kwargs: Any,
357
+ ) -> None:
358
+ del kwargs
359
+ xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
360
+ generic_param_init_fn_(
361
+ module=module,
362
+ init_fn_=xavier_normal_,
363
+ d_model=d_model,
364
+ n_layers=n_layers,
365
+ init_div_is_residual=init_div_is_residual,
366
+ emb_init_std=emb_init_std,
367
+ emb_init_uniform_lim=emb_init_uniform_lim,
368
+ )
369
+
370
+
371
+ MODEL_INIT_REGISTRY = {
372
+ "default_": torch_default_param_init_fn_,
373
+ "baseline_": baseline_param_init_fn_,
374
+ "kaiming_uniform_": kaiming_uniform_param_init_fn_,
375
+ "kaiming_normal_": kaiming_normal_param_init_fn_,
376
+ "neox_init_": neox_param_init_fn_,
377
+ "small_init_": small_param_init_fn_,
378
+ "xavier_uniform_": xavier_uniform_param_init_fn_,
379
+ "xavier_normal_": xavier_normal_param_init_fn_,
380
+ }
quantize_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "damp_percent": 0.01,
5
+ "desc_act": false,
6
+ "static_groups": false,
7
+ "sym": true,
8
+ "true_sequential": true,
9
+ "model_name_or_path": null,
10
+ "model_file_base_name": null
11
+ }
tokenization_SEA_BPE.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from shutil import copyfile
3
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
4
+ import sentencepiece as spm
5
+ from tokenizers import processors
6
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
7
+ from transformers.utils import logging
8
+
9
+ logger = logging.get_logger(__name__)
10
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
11
+ SPIECE_UNDERLINE = "▁"
12
+
13
+
14
+ class SEABPETokenizer(PreTrainedTokenizer):
15
+ """
16
+ Construct the SEA BPE Tokenizer tailored for SEA languages. Based on the Byte-Pair-Encoding with an expanded voculabulary size
17
+
18
+ Args:
19
+ vocab_file (`str`):
20
+ Path to the vocabulary file.
21
+ legacy (`bool`, *optional*, defaults to `True`):
22
+ Whether or not the `legacy` behaviour of the tokenizer should be used. Legacy is before the merge of #24622
23
+ which includes fixes to properly handle tokens that appear after special tokens.
24
+ legacy means we are not modifying existing tokenizers without knowing. (And we need to manually update those core tokenizers)
25
+
26
+ A simple example:
27
+
28
+ - `legacy=True`:
29
+ ```python
30
+ >>> from transformers import T5Tokenizer
31
+
32
+ >>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=True)
33
+ >>> tokenizer.encode("Hello <extra_id_0>.")
34
+ [8774, 32099, 3, 5, 1]
35
+ ```
36
+ - `legacy=False`:
37
+ ```python
38
+ >>> from transformers import T5Tokenizer
39
+
40
+ >>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False)
41
+ >>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here
42
+ [8774, 32099, 5, 1]
43
+ ```
44
+ Checkout the pull request and the issue [here](https://github.com/huggingface/transformers/pull/24565) for
45
+ more details.
46
+
47
+ """
48
+
49
+ vocab_files_names = VOCAB_FILES_NAMES
50
+
51
+ def __init__(
52
+ self,
53
+ vocab_file,
54
+ unk_token="<unk>",
55
+ bos_token=None,
56
+ eos_token="<|endoftext|>",
57
+ pad_token=None,
58
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
59
+ add_bos_token=False,
60
+ add_eos_token=False,
61
+ clean_up_tokenization_spaces=False,
62
+ legacy=None,
63
+ **kwargs,
64
+ ):
65
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
66
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
67
+ self.sp_model.Load(vocab_file)
68
+ super().__init__(
69
+ bos_token=bos_token,
70
+ eos_token=eos_token,
71
+ unk_token=unk_token,
72
+ pad_token=pad_token,
73
+ add_bos_token=add_bos_token,
74
+ add_eos_token=add_eos_token,
75
+ sp_model_kwargs=self.sp_model_kwargs,
76
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
77
+ legacy=legacy,
78
+ **kwargs,
79
+ )
80
+ if legacy is None:
81
+ logger.warning_once(
82
+ f"You are using the default legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to read the related pull request available at https://github.com/huggingface/transformers/pull/24565, and set the legacy attribute accordingly."
83
+ )
84
+ legacy = True
85
+ self.legacy = legacy
86
+ self.vocab_file = vocab_file
87
+ self.add_bos_token = add_bos_token
88
+ self.add_eos_token = add_eos_token
89
+
90
+ def __getstate__(self):
91
+ state = self.__dict__.copy()
92
+ state["sp_model"] = None
93
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
94
+ return state
95
+
96
+ def __setstate__(self, d):
97
+ self.__dict__ = d
98
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
99
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
100
+
101
+ @property
102
+ def vocab_size(self):
103
+ """Returns vocab size"""
104
+ return self.sp_model.get_piece_size()
105
+
106
+ def get_vocab(self):
107
+ """Returns vocab as a dict"""
108
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
109
+ vocab.update(self.added_tokens_encoder)
110
+ return vocab
111
+
112
+ def tokenize(self, text, **kwargs) -> List[str]:
113
+ if not self.legacy:
114
+ text = SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " ")
115
+ return super().tokenize(text, **kwargs)
116
+
117
+ def _tokenize(self, text):
118
+ """
119
+ Returns a tokenized string.
120
+
121
+ Since the sentencepiece internal model always adds a SPIECE_UNDERLINE, at the beginning of the provided text,
122
+ we need to remove it by hand when the current text is a subsequence. This happens whenever the `self.tokenize`
123
+ function is called with specials tokens: the input is split on the special tokens, and each subsequence is
124
+ passed to `_tokenize`. Thus if a subsequence did not start with a `" "` or SPIECE_UNDERLINE, we have to remove
125
+ the extra `SPIECE_UNDERLINE` prepended.
126
+ """
127
+ if not self.legacy:
128
+ is_first = text.startswith(SPIECE_UNDERLINE)
129
+ if is_first:
130
+ text = text[1:]
131
+ tokens = self.sp_model.encode(text, out_type=str)
132
+ if (
133
+ not self.legacy
134
+ and (not is_first)
135
+ and (not text.startswith(" "))
136
+ and tokens[0].startswith(SPIECE_UNDERLINE)
137
+ ):
138
+ tokens = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:]
139
+ return tokens
140
+
141
+ def _convert_token_to_id(self, token):
142
+ """Converts a token (str) in an id using the vocab."""
143
+ return self.sp_model.piece_to_id(token)
144
+
145
+ def _convert_id_to_token(self, index):
146
+ """Converts an index (integer) in a token (str) using the vocab."""
147
+ token = self.sp_model.IdToPiece(index)
148
+ return token
149
+
150
+ def convert_tokens_to_string(self, tokens):
151
+ """Converts a sequence of tokens (string) in a single string."""
152
+ current_sub_tokens = []
153
+ out_string = ""
154
+ prev_is_special = False
155
+ for i, token in enumerate(tokens):
156
+ if token in self.all_special_tokens:
157
+ if not prev_is_special and i != 0:
158
+ out_string += " "
159
+ out_string += self.sp_model.decode(current_sub_tokens) + token
160
+ prev_is_special = True
161
+ current_sub_tokens = []
162
+ else:
163
+ current_sub_tokens.append(token)
164
+ prev_is_special = False
165
+ out_string += self.sp_model.decode(current_sub_tokens)
166
+ return out_string
167
+
168
+ def save_vocabulary(
169
+ self, save_directory, filename_prefix: Optional[str] = None
170
+ ) -> Tuple[str]:
171
+ """
172
+ Save the vocabulary and special tokens file to a directory.
173
+
174
+ Args:
175
+ save_directory (`str`):
176
+ The directory in which to save the vocabulary.
177
+
178
+ Returns:
179
+ `Tuple(str)`: Paths to the files saved.
180
+ """
181
+ if not os.path.isdir(save_directory):
182
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
183
+ return
184
+ out_vocab_file = os.path.join(
185
+ save_directory,
186
+ (filename_prefix + "-" if filename_prefix else "")
187
+ + VOCAB_FILES_NAMES["vocab_file"],
188
+ )
189
+ if os.path.abspath(self.vocab_file) != os.path.abspath(
190
+ out_vocab_file
191
+ ) and os.path.isfile(self.vocab_file):
192
+ copyfile(self.vocab_file, out_vocab_file)
193
+ elif not os.path.isfile(self.vocab_file):
194
+ with open(out_vocab_file, "wb") as fi:
195
+ content_spiece_model = self.sp_model.serialized_model_proto()
196
+ fi.write(content_spiece_model)
197
+ return (out_vocab_file,)
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0c576972c98fa150efff77f61a30b46afbc1247ff4697f39e51e90d0a8b2190
3
+ size 4569957
tokenizer_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<|endofline|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<|padding|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "auto_map": {
39
+ "AutoTokenizer": [
40
+ "tokenization_SEA_BPE.SEABPETokenizer",
41
+ null
42
+ ]
43
+ },
44
+ "bos_token": null,
45
+ "clean_up_tokenization_spaces": false,
46
+ "eos_token": "<|endoftext|>",
47
+ "legacy": true,
48
+ "model_max_length": 1000000000000000019884624838656,
49
+ "pad_token": "<|padding|>",
50
+ "sp_model_kwargs": {},
51
+ "tokenizer_class": "SEABPETokenizer",
52
+ "unk_token": "<unk>"
53
+ }
warnings.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class VersionedDeprecationWarning(DeprecationWarning):
2
+ """A custom deprecation warning class that includes version information.
3
+ Attributes:
4
+ message (str): The deprecation message describing why the feature is deprecated.
5
+ remove_version (str): The version in which the feature will be removed.
6
+ Example:
7
+ >>> def deprecated_function():
8
+ ... warnings.warn(
9
+ ... VersionedDeprecationWarning(
10
+ ... "Function XYZ is deprecated.",
11
+ ... after_version="2.0.0"
12
+ ... )
13
+ ... )
14
+ ...
15
+ >>> deprecated_function()
16
+ DeprecationWarning: Function XYZ is deprecated. It will be removed in version 2.0.0.
17
+ """
18
+
19
+ def __init__(self, message: str, remove_version: str) -> None:
20
+ super().__init__(message + f" It will be removed in version {remove_version}.")