|
import math |
|
from typing import List, Optional, Union |
|
|
|
import torch |
|
from PIL import Image |
|
from transformers import ImageProcessingMixin, ProcessorMixin, SiglipImageProcessor, AutoTokenizer, AutoImageProcessor |
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.image_utils import ImageInput |
|
from transformers.tokenization_utils_base import ( |
|
PaddingStrategy, |
|
PreTokenizedInput, |
|
TextInput, |
|
TruncationStrategy, |
|
) |
|
from transformers.utils import TensorType |
|
|
|
|
|
class MultiCropImageProcessor(ImageProcessingMixin): |
|
def __init__(self, model_name, max_crops=0, **kwargs): |
|
self.processor = SiglipImageProcessor.from_pretrained(model_name) |
|
self.crop_size = 384 |
|
self.max_crops = max_crops |
|
self.stride_ratio = 2 |
|
|
|
def __call__( |
|
self, |
|
images: List[Image.Image], |
|
max_crops: int = -1, |
|
): |
|
res = { |
|
"pixel_values": [], |
|
"coords": [], |
|
} |
|
if max_crops < 0: |
|
max_crops = self.max_crops |
|
for image in images: |
|
outputs, output_coords = self.process_image(image, max_crops) |
|
res["pixel_values"].append(outputs) |
|
res["coords"].append(output_coords) |
|
return res |
|
|
|
def process_image( |
|
self, |
|
image: Image.Image, |
|
max_crops: int |
|
): |
|
outputs = [] |
|
output_coords = [] |
|
outputs.append(self.processor(image, return_tensors="pt").pixel_values) |
|
output_coords.append(torch.tensor([0.5, 0.5])) |
|
width, height = image.size |
|
crop_size = self.crop_size |
|
stride = crop_size // self.stride_ratio |
|
if ( |
|
max_crops == 0 |
|
or width <= (crop_size + stride) |
|
and height <= (crop_size + stride) |
|
): |
|
outputs = torch.cat(outputs, dim=0) |
|
output_coords = torch.cat(output_coords, dim=0) |
|
return outputs, output_coords |
|
total_tokens = math.inf |
|
while total_tokens > max_crops: |
|
total_tokens = ( |
|
math.floor((width - crop_size) / stride) + 1 |
|
) * ( |
|
math.floor((height - crop_size) / stride) + 1 |
|
) |
|
if total_tokens > max_crops: |
|
crop_size += 10 |
|
stride = crop_size // self.stride_ratio |
|
stride = crop_size // self.stride_ratio |
|
x_steps = int(math.floor((width - crop_size) / stride) + 1) |
|
if x_steps < 1: |
|
x_steps = 1 |
|
y_steps = int(math.floor((height - crop_size) / stride) + 1) |
|
if y_steps < 1: |
|
y_steps = 1 |
|
if x_steps == 1 and y_steps == 1: |
|
outputs = torch.cat(outputs, dim=0) |
|
output_coords = torch.cat(output_coords, dim=0) |
|
return outputs, output_coords |
|
x_coords = [] |
|
y_coords = [] |
|
for i in range(x_steps): |
|
x_coords.append([i * stride, i * stride + crop_size]) |
|
if x_coords[-1][1] != width: |
|
x_coords[-1][1] = width |
|
for i in range(y_steps): |
|
y_coords.append([i * stride, i * stride + crop_size]) |
|
if y_coords[-1][1] != height: |
|
y_coords[-1][1] = height |
|
image_parts = [] |
|
part_coords = [] |
|
for i in range(len(x_coords)): |
|
for j in range(len(y_coords)): |
|
image_parts.append( |
|
image.crop( |
|
(x_coords[i][0], y_coords[j][0], x_coords[i][1], y_coords[j][1]) |
|
) |
|
) |
|
part_coords.append( |
|
torch.tensor( |
|
[ |
|
(x_coords[i][0] + x_coords[i][1]) / 2 / width, |
|
(y_coords[j][0] + y_coords[j][1]) / 2 / height, |
|
] |
|
) |
|
) |
|
for image_part in image_parts: |
|
outputs.append(self.processor(image_part, return_tensors="pt").pixel_values) |
|
for part_coord in part_coords: |
|
output_coords.append(part_coord) |
|
outputs = torch.cat(outputs, dim=0) |
|
output_coords = torch.stack(output_coords, dim=0) |
|
return outputs, output_coords |
|
|
|
|
|
class LlavaProcessor(ProcessorMixin): |
|
attributes = ["image_processor", "tokenizer"] |
|
image_processor_class = MultiCropImageProcessor |
|
tokenizer_class = "SiglipTokenizer" |
|
|
|
def __init__(self, image_processor: MultiCropImageProcessor, tokenizer): |
|
self.image_processor = image_processor |
|
self.tokenizer = tokenizer |
|
self.search_model = None |
|
|
|
@classmethod |
|
def from_pretrained(cls, path, trust_remote_code=True, **kwargs): |
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=trust_remote_code) |
|
image_processor = MultiCropImageProcessor(path, trust_remote_code=trust_remote_code) |
|
return LlavaProcessor(image_processor, tokenizer) |
|
|
|
def __call__( |
|
self, |
|
text: Union[ |
|
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput] |
|
] = None, |
|
images: ImageInput = None, |
|
model = None, |
|
max_crops: int = 0, |
|
num_tokens = None, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length=None, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
) -> BatchFeature: |
|
if images is not None: |
|
processor_outputs = self.image_processor(images, max_crops) |
|
pixel_values = processor_outputs["pixel_values"] |
|
pixel_values = [ |
|
value.to(model.device).to(model.dtype) for value in pixel_values |
|
] |
|
coords = processor_outputs["coords"] |
|
coords = [value.to(model.device).to(model.dtype) for value in coords] |
|
image_outputs = model.vision_model(pixel_values, coords, num_tokens) |
|
image_features = model.multi_modal_projector(image_outputs) |
|
else: |
|
image_features = None |
|
text_inputs = self.tokenizer( |
|
text, |
|
return_tensors=return_tensors, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
) |
|
text_inputs['input_ids'] = text_inputs['input_ids'].to(model.device) |
|
text_inputs['attention_mask'] = text_inputs['attention_mask'].to(model.device) |
|
return BatchFeature(data={**text_inputs, "image_features": image_features}) |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
|