license: mit
Table of Contents
run
A simple script to run a Flow that can be used for development and debugging.
ChromaDBFlow
ChromaDBFlow Objects
class ChromaDBFlow(AtomicFlow)
A flow that uses the ChromaDB model to write and read memories stored in a database
Configuration Parameters:
name
(str): The name of the flow. Default: "chroma_db"description
(str): A description of the flow. This description is used to generate the help message of the flow. Default: "ChromaDB is a document store that uses vector embeddings to store and retrieve documents."backend
(Dict[str, Any]): The configuration of the backend which is used to fetch api keys. Default: LiteLLMBackend with the default parameters of LiteLLMBackend (see aiflows.backends.LiteLLMBackend). Except for the following parameter whose default value is overwritten:api_infos
(List[Dict[str, Any]]): The list of api infos. Default: No default value, this parameter is required.model_name
(str): The name of the model. Default: "". In the current implementation, this parameter is not used.
similarity_search_kwargs
(Dict[str, Any]): The parameters to pass to the similarity search method of the ChromaDB. Default:k
(int): The number of documents to retrieve. Default: 2filter
(str): The filter to apply to the documents. Default: null
paths_to_data
(List[str]): The paths to the data to store in the database at instantiation. Default: []chunk_size
(int): The size of the chunks to split the documents into. Default: 700seperator
(str): The separator to use to split the documents. Default: "\n"chunk_overlap
(int): The overlap between the chunks. Default: 0persist_directory
(str): The directory to persist the database. Default: "./demo_db_dir"Other parameters are inherited from the default configuration of AtomicFlow (see AtomicFlow)
Input Interface:
operation
(str): The operation to perform. It can be "write" or "read".content
(str or List[str]): The content to write or read. If operation is "write", it must be a string or a list of strings. If operation is "read", it must be a string.
Output Interface:
retrieved
(str or List[str]): The retrieved content. If operation is "write", it is an empty string. If operation is "read", it is a string or a list of strings.
Arguments:
backend
(LiteLLMBackend
): The backend of the flow (used to retrieve the API key)\**kwargs
: Additional arguments to pass to the flow.
instantiate_from_config
@classmethod
def instantiate_from_config(cls, config)
This method instantiates the flow from a configuration file
Arguments:
config
(Dict[str, Any]
): The configuration of the flow.
Returns:
ChromaDBFlow
: The instantiated flow.
run
def run(input_message: FlowMessage)
This method runs the flow. It runs the ChromaDBFlow. It either writes or reads memories from the database.
Arguments:
input_message
(FlowMessage
): The input message of the flow.
VectorStoreFlow
VectorStoreFlow Objects
class VectorStoreFlow(AtomicFlow)
A flow that uses the VectorStore model to write and read memories stored in a database (see VectorStoreFlow.yaml for the default configuration)
Configuration Parameters:
name
(str): The name of the flow. Default: "VecotrStoreFlow"description
(str): A description of the flow. This description is used to generate the help message of the flow. Default: "VectorStoreFlow"backend
(Dict[str, Any]): The configuration of the backend which is used to fetch api keys. Default: LiteLLMBackend with the default parameters of LiteLLMBackend (see flows.backends.LiteLLMBackend). Except for the following parameter whose default value is overwritten:api_infos
(List[Dict[str, Any]]): The list of api infos. Default: No default value, this parameter is required.model_name
(str): The name of the model. Default: "". In the current implementation, this parameter is not used.
type
(str): The type of the vector store. It can be "chroma" or "faiss". Default: "chroma"embedding_size
(int): The size of the embeddings (only for faiss). Default: 1536retriever_config
(Dict[str, Any]): The configuration of the retriever. Default: empty dictionary- Other parameters are inherited from the default configuration of AtomicFlow (see AtomicFlow)
Input Interface:
operation
(str): The operation to perform. It can be "write" or "read".content
(str or List[str]): The content to write or read. If operation is "write", it must be a string or a list of strings. If operation is "read", it must be a string.
Output Interface:
retrieved
(str or List[str]): The retrieved content. If operation is "write", it is an empty string. If operation is "read", it is a string or a list of strings.
Arguments:
backend
(LiteLLMBackend
): The backend of the flow (used to retrieve the API key)vector_db
(VectorStoreRetriever
): The vector store retrievertype
(str
): The type of the vector store\**kwargs
: Additional arguments to pass to the flow. See :class:aiflows.base_flows.AtomicFlow
for more details.
instantiate_from_config
@classmethod
def instantiate_from_config(cls, config: Dict[str, Any])
This method instantiates the flow from a configuration file
Arguments:
config
(Dict[str, Any]
): The configuration of the flow.
Returns:
VectorStoreFlow
: The instantiated flow.
package_documents
@staticmethod
def package_documents(documents: List[str]) -> List[Document]
This method packages the documents in a list of Documents.
Arguments:
documents
(List[str]
): The documents to package.
Returns:
List[Document]
: The packaged documents.
run
def run(input_message: FlowMessage)
This method runs the flow. It either writes or reads memories from the database.
Arguments:
input_message
(FlowMessage
): The input data of the flow.