ModernBERT-large_v3 / README.md
aiface's picture
Model save
8ef386f verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: ModernBERT-large_v3
    results: []

ModernBERT-large_v3

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8266
  • Accuracy: 0.9109
  • Precision Macro: 0.7681
  • Recall Macro: 0.7438
  • F1 Macro: 0.7542
  • F1 Weighted: 0.9084

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro F1 Weighted
0.9719 1.0 179 0.4542 0.8484 0.7048 0.5982 0.5951 0.8301
0.6216 2.0 358 0.3472 0.8819 0.8897 0.6468 0.6648 0.8674
0.5377 3.0 537 0.3063 0.8926 0.7740 0.7326 0.7477 0.8893
0.4253 4.0 716 0.2703 0.9109 0.8330 0.7357 0.7651 0.9053
0.3699 5.0 895 0.2795 0.9090 0.7756 0.7968 0.7850 0.9107
0.2003 6.0 1074 0.3297 0.9128 0.8225 0.7620 0.7848 0.9094
0.1596 7.0 1253 0.3799 0.9097 0.7673 0.7805 0.7734 0.9109
0.0876 8.0 1432 0.5013 0.9236 0.8343 0.7899 0.8084 0.9214
0.0598 9.0 1611 0.5279 0.9185 0.8126 0.7621 0.7815 0.9152
0.054 10.0 1790 0.5909 0.9109 0.7998 0.7728 0.7847 0.9092
0.0419 11.0 1969 0.7661 0.9141 0.7877 0.7427 0.7594 0.9102
0.0108 12.0 2148 0.9184 0.9185 0.8260 0.7337 0.7601 0.9122
0.0177 13.0 2327 0.8254 0.9128 0.7820 0.7494 0.7628 0.9099
0.0013 14.0 2506 0.8059 0.9103 0.7741 0.7391 0.7531 0.9069
0.0019 15.0 2685 0.8174 0.9078 0.7620 0.7502 0.7556 0.9065
0.0028 16.0 2864 0.8202 0.9109 0.7704 0.7438 0.7550 0.9082
0.0 17.0 3043 0.8126 0.9103 0.7678 0.7433 0.7537 0.9078
0.0008 18.0 3222 0.8319 0.9109 0.7734 0.7482 0.7589 0.9085
0.0 19.0 3401 0.8245 0.9116 0.7686 0.7443 0.7546 0.9090
0.0001 20.0 3580 0.8266 0.9109 0.7681 0.7438 0.7542 0.9084

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4