Update README.md
Browse files
README.md
CHANGED
@@ -76,6 +76,59 @@ language:
|
|
76 |
- yo
|
77 |
- zh
|
78 |
- zu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
pipeline_tag: sentence-similarity
|
80 |
tags:
|
81 |
- bert
|
@@ -83,4 +136,109 @@ tags:
|
|
83 |
- sentence-embedding
|
84 |
- sentence-similarity
|
85 |
- multilingual
|
86 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
- yo
|
77 |
- zh
|
78 |
- zu
|
79 |
+
- af
|
80 |
+
- as
|
81 |
+
- az
|
82 |
+
- be
|
83 |
+
- bo
|
84 |
+
- ceb
|
85 |
+
- co
|
86 |
+
- cy
|
87 |
+
- eo
|
88 |
+
- eu
|
89 |
+
- fy
|
90 |
+
- ga
|
91 |
+
- gd
|
92 |
+
- gl
|
93 |
+
- haw
|
94 |
+
- hmn
|
95 |
+
- hr
|
96 |
+
- ht
|
97 |
+
- hy
|
98 |
+
- is
|
99 |
+
- jv
|
100 |
+
- ka
|
101 |
+
- kn
|
102 |
+
- ku
|
103 |
+
- ky
|
104 |
+
- la
|
105 |
+
- lb
|
106 |
+
- lo
|
107 |
+
- mi
|
108 |
+
- mn
|
109 |
+
- ml
|
110 |
+
- mr
|
111 |
+
- ms
|
112 |
+
- mt
|
113 |
+
- ny
|
114 |
+
- or
|
115 |
+
- rw
|
116 |
+
- si
|
117 |
+
- sk
|
118 |
+
- sl
|
119 |
+
- sm
|
120 |
+
- st
|
121 |
+
- su
|
122 |
+
- te
|
123 |
+
- tg
|
124 |
+
- th
|
125 |
+
- tk
|
126 |
+
- tl
|
127 |
+
- tt
|
128 |
+
- ug
|
129 |
+
- uz
|
130 |
+
- vi
|
131 |
+
- yi
|
132 |
pipeline_tag: sentence-similarity
|
133 |
tags:
|
134 |
- bert
|
|
|
136 |
- sentence-embedding
|
137 |
- sentence-similarity
|
138 |
- multilingual
|
139 |
+
---
|
140 |
+
# NaSE (News-adapted Sentence Encoder)
|
141 |
+
|
142 |
+
This model is a news-adapted sentence encoder, domain-specialized starting from the pretrained massively mulitlingual sentence encoder [LaBSE](https://www.kaggle.com/models/google/labse/tensorFlow2/labse/1?tfhub-redirect=true).
|
143 |
+
|
144 |
+
## Model Details
|
145 |
+
|
146 |
+
### Model Description
|
147 |
+
|
148 |
+
NaSE is a domain-adapted multilingual sentence encoder, initialized from [LaBSE](https://www.kaggle.com/models/google/labse/tensorFlow2/labse/1?tfhub-redirect=true).
|
149 |
+
It was specialized to the news domain using two multilingual corpora, namely [Polynews](https://huggingface.co/datasets/aiana94/polynews) and [PolyNewsParallel](https://huggingface.co/datasets/aiana94/polynews-parallel).
|
150 |
+
More specifically, NaSE was pretrained with two objectives: denoising auto-encoding and sequence-to-sequence machine translation.
|
151 |
+
|
152 |
+
## Usage (HuggingFace Transformers)
|
153 |
+
|
154 |
+
Here is how to use this model to get the sentence embeddings of a given text in PyTorch:
|
155 |
+
|
156 |
+
```python
|
157 |
+
from transformers import BERTModel, BERTTokenizerFast
|
158 |
+
|
159 |
+
tokenizer = BERTTokenizerFast.from_pretrained('aiana94/NaSE')
|
160 |
+
model = BERTModel.from_pretrained('aiana94/NaSE')
|
161 |
+
|
162 |
+
# pepare input
|
163 |
+
sentences = ["This is an example sentence", "Dies ist auch ein Beispielsatz in einer anderen Sprache."]
|
164 |
+
encoded_input = tokenizer.encode(sentences, return_tensors='pt')
|
165 |
+
|
166 |
+
# forward pass
|
167 |
+
with torch.no_grad():
|
168 |
+
output = model(**encoded_input)
|
169 |
+
|
170 |
+
# to get the sentence embeddings, use the pooler output
|
171 |
+
sentence_embeddings = output.pooler_output
|
172 |
+
```
|
173 |
+
|
174 |
+
and in Tensorflow:
|
175 |
+
|
176 |
+
```python
|
177 |
+
from transformers import TFBERTModel, BERTTokenizerFast
|
178 |
+
|
179 |
+
tokenizer = BERTTokenizerFast.from_pretrained('aiana94/NaSE')
|
180 |
+
model = TFBERTModel.from_pretrained('aiana94/NaSE')
|
181 |
+
|
182 |
+
# pepare input
|
183 |
+
sentences = ["This is an example sentence", "Dies ist auch ein Beispielsatz in einer anderen Sprache."]
|
184 |
+
encoded_input = tokenizer.encode(sentences, return_tensors='tf')
|
185 |
+
|
186 |
+
# forward pass
|
187 |
+
with torch.no_grad():
|
188 |
+
output = model(**encoded_input)
|
189 |
+
|
190 |
+
# to get the sentence embeddings, use the pooler output
|
191 |
+
sentence_embeddings = output.pooler_output
|
192 |
+
```
|
193 |
+
|
194 |
+
For similarity between sentences, an L2-norm is recommended before calculating the similarity:
|
195 |
+
|
196 |
+
```python
|
197 |
+
import torch.nn.functional as F
|
198 |
+
|
199 |
+
def similarity(embeddings_1, embeddings_2):
|
200 |
+
pass
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
```
|
205 |
+
|
206 |
+
## Bias, Risks, and Limitations
|
207 |
+
|
208 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
209 |
+
|
210 |
+
[More Information Needed]
|
211 |
+
|
212 |
+
|
213 |
+
## Training Details
|
214 |
+
|
215 |
+
### Training Data
|
216 |
+
|
217 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
218 |
+
|
219 |
+
[More Information Needed]
|
220 |
+
|
221 |
+
### Training Procedure
|
222 |
+
|
223 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
224 |
+
|
225 |
+
#### Preprocessing [optional]
|
226 |
+
|
227 |
+
[More Information Needed]
|
228 |
+
|
229 |
+
|
230 |
+
#### Training Hyperparameters
|
231 |
+
|
232 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
233 |
+
|
234 |
+
|
235 |
+
## Technical Specifications
|
236 |
+
|
237 |
+
The model was pretrained on 1 40GB NVIDIA A100 GPU for a total of 100k steps. See the [training code](https://github.com/andreeaiana/nase) for all hyperparameters.
|
238 |
+
|
239 |
+
|
240 |
+
## Citation [optional]
|
241 |
+
|
242 |
+
**BibTeX:**
|
243 |
+
|
244 |
+
[More Information Needed]
|