Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,19 @@
|
|
1 |
-
Below is the proper structure formatted to align with Hugging Face's repository conventions, including **tags**, **text**, and other essential metadata.
|
2 |
-
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# LLaMA-3.2-1B-Instruct Fine-Tuned Model
|
6 |
|
@@ -68,7 +81,7 @@ pip install transformers datasets torch accelerate
|
|
68 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
69 |
|
70 |
# Load the fine-tuned model and tokenizer
|
71 |
-
model_name = "
|
72 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
73 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
74 |
```
|
@@ -87,16 +100,7 @@ print(response)
|
|
87 |
|
88 |
---
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
| Metric | Value |
|
93 |
-
|--------------------|----------------|
|
94 |
-
| **Validation Loss** | 1.24 |
|
95 |
-
| **Perplexity** | 3.47 |
|
96 |
-
| **Accuracy** | 92% (logical tasks) |
|
97 |
-
| **Code Quality** | 89% (test cases) |
|
98 |
-
|
99 |
-
---
|
100 |
|
101 |
## Model Training
|
102 |
|
@@ -106,11 +110,8 @@ print(response)
|
|
106 |
|
107 |
### Training Configuration
|
108 |
- **Batch Size**: 32
|
109 |
-
- **Learning Rate**: 5e-5
|
110 |
- **Epochs**: 1
|
111 |
-
|
112 |
-
- **Scheduler**: Linear Decay
|
113 |
-
|
114 |
### Frameworks Used
|
115 |
- **Unsloth**: For efficient training
|
116 |
- **Hugging Face Transformers**: For model and tokenizer handling
|
@@ -149,7 +150,7 @@ This model can also be accessed using the Hugging Face Inference API for hosted
|
|
149 |
```python
|
150 |
from transformers import pipeline
|
151 |
|
152 |
-
pipe = pipeline("text-generation", model="
|
153 |
result = pipe("Explain the concept of recursion in programming.")
|
154 |
print(result)
|
155 |
```
|
@@ -189,13 +190,4 @@ This model is released under the **Apache 2.0 License**. See `LICENSE` for detai
|
|
189 |
`llama` `fine-tuning` `math` `coding` `logical-reasoning` `instruction-following` `transformers`
|
190 |
|
191 |
**Summary**:
|
192 |
-
A fine-tuned version of LLaMA-3.2-1B-Instruct specializing in logical reasoning, math problem-solving, and code generation. Perfect for AI-driven tutoring, programming assistance, and logical problem-solving tasks.
|
193 |
-
# Uploaded model
|
194 |
-
|
195 |
-
- **Developed by:** user3432234234
|
196 |
-
- **License:** apache-2.0
|
197 |
-
- **Finetuned from model :** unsloth/llama-3.2-1b-instruct-bnb-4bit
|
198 |
-
|
199 |
-
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
200 |
-
|
201 |
-
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- kanhatakeyama/wizardlm8x22b-logical-math-coding-sft
|
5 |
+
base_model:
|
6 |
+
- unsloth/Llama-3.2-1B-Instruct
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
library_name: transformers
|
9 |
+
tags:
|
10 |
+
- llm
|
11 |
+
- maths
|
12 |
+
- coding
|
13 |
+
- reasoning
|
14 |
+
- tech
|
15 |
+
---
|
16 |
+
|
17 |
|
18 |
# LLaMA-3.2-1B-Instruct Fine-Tuned Model
|
19 |
|
|
|
81 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
82 |
|
83 |
# Load the fine-tuned model and tokenizer
|
84 |
+
model_name = "ai-nexuz/llama-3.2-1b-instruct-fine-tuned"
|
85 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
86 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
87 |
```
|
|
|
100 |
|
101 |
---
|
102 |
|
103 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
## Model Training
|
106 |
|
|
|
110 |
|
111 |
### Training Configuration
|
112 |
- **Batch Size**: 32
|
|
|
113 |
- **Epochs**: 1
|
114 |
+
|
|
|
|
|
115 |
### Frameworks Used
|
116 |
- **Unsloth**: For efficient training
|
117 |
- **Hugging Face Transformers**: For model and tokenizer handling
|
|
|
150 |
```python
|
151 |
from transformers import pipeline
|
152 |
|
153 |
+
pipe = pipeline("text-generation", model="ai-nexuz/llama-3.2-1b-instruct-fine-tuned")
|
154 |
result = pipe("Explain the concept of recursion in programming.")
|
155 |
print(result)
|
156 |
```
|
|
|
190 |
`llama` `fine-tuning` `math` `coding` `logical-reasoning` `instruction-following` `transformers`
|
191 |
|
192 |
**Summary**:
|
193 |
+
A fine-tuned version of LLaMA-3.2-1B-Instruct specializing in logical reasoning, math problem-solving, and code generation. Perfect for AI-driven tutoring, programming assistance, and logical problem-solving tasks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|