|
--- |
|
license: apache-2.0 |
|
base_model: facebook/bart-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-base-finetuned-CNN-DailyNews |
|
results: [] |
|
pipeline_tag: summarization |
|
datasets: |
|
- cnn_dailymail |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-finetuned-CNN-DailyNews |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9584 |
|
- Rouge1: 0.1977 |
|
- Rouge2: 0.1321 |
|
- Rougel: 0.1792 |
|
- Rougelsum: 0.1884 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 2.6767 | 1.0 | 63 | 1.8911 | 0.1745 | 0.0915 | 0.1536 | 0.1644 | |
|
| 2.0691 | 2.0 | 126 | 1.5904 | 0.1777 | 0.1003 | 0.1579 | 0.1677 | |
|
| 1.8047 | 3.0 | 189 | 1.3652 | 0.1778 | 0.1029 | 0.1587 | 0.1663 | |
|
| 1.6345 | 4.0 | 252 | 1.2317 | 0.1959 | 0.1226 | 0.1751 | 0.1842 | |
|
| 1.4837 | 5.0 | 315 | 1.1099 | 0.2015 | 0.1265 | 0.1796 | 0.1911 | |
|
| 1.3904 | 6.0 | 378 | 1.0267 | 0.2004 | 0.1278 | 0.1799 | 0.1893 | |
|
| 1.2876 | 7.0 | 441 | 0.9788 | 0.1978 | 0.1307 | 0.1784 | 0.1878 | |
|
| 1.2578 | 8.0 | 504 | 0.9584 | 0.1977 | 0.1321 | 0.1792 | 0.1884 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |