ahishamm's picture
End of training
770b2cf verified
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: QURANIC Whisper Large V3 - revised
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common_voice_16_1
          type: mozilla-foundation/common_voice_16_1
          config: ar
          split: None
          args: 'config: ar, split: train'
        metrics:
          - name: Wer
            type: wer
            value: 163.38589913248052

QURANIC Whisper Large V3 - revised

This model is a fine-tuned version of openai/whisper-large-v3 on the Common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2252
  • Wer: 163.3859

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3095 0.21 2000 0.3293 155.0801
0.2412 0.41 4000 0.3059 287.9687
0.1762 0.62 6000 0.2843 152.7845
0.1906 0.82 8000 0.2645 124.8897
0.0952 1.03 10000 0.2535 129.0233
0.0955 1.24 12000 0.2567 141.4259
0.0865 1.44 14000 0.2360 205.5690
0.1363 1.65 16000 0.2288 187.0938
0.1038 1.86 18000 0.2197 178.2311
0.062 2.06 20000 0.2252 163.3859

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.0
  • Datasets 2.18.0
  • Tokenizers 0.15.1