andres.salguero
commited on
Commit
•
c4dea26
1
Parent(s):
4ca50f1
add .bin
Browse files- README.md +32 -15
- best_resnet50_model.bin +2 -2
- config.json +6 -6
README.md
CHANGED
@@ -1,28 +1,45 @@
|
|
1 |
-
|
2 |
---
|
3 |
license: mit
|
4 |
tags:
|
5 |
- image-classification
|
6 |
- resnet50
|
|
|
|
|
7 |
task:
|
8 |
- image-classification
|
9 |
output:
|
10 |
-
- label: "
|
11 |
-
score: 0.
|
12 |
widget:
|
13 |
-
- text: "
|
14 |
output:
|
15 |
-
- label: "
|
16 |
-
score: 0.
|
17 |
---
|
18 |
-
# Model Card for Your Model
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
```python
|
25 |
-
from transformers import pipeline
|
26 |
-
classifier = pipeline("image-classification", model="username/model_name")
|
27 |
-
result = classifier("path_to_image.jpg")
|
28 |
-
print(result)
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
tags:
|
4 |
- image-classification
|
5 |
- resnet50
|
6 |
+
- medical
|
7 |
+
- acne-detection
|
8 |
task:
|
9 |
- image-classification
|
10 |
output:
|
11 |
+
- label: "level1"
|
12 |
+
score: 0.98
|
13 |
widget:
|
14 |
+
- text: "example_image.jpg"
|
15 |
output:
|
16 |
+
- label: "level3"
|
17 |
+
score: 0.85
|
18 |
---
|
|
|
19 |
|
20 |
+
# ResNet-50 Model for Acne Severity Classification
|
21 |
+
|
22 |
+
This is a fine-tuned ResNet-50 model designed to classify the severity of acne from medical images into five categories (Severity 1 to Severity 5). The model leverages transfer learning on ResNet-50 pre-trained on ImageNet and adapts it for acne severity classification tasks.
|
23 |
+
|
24 |
+
## Model Details
|
25 |
+
|
26 |
+
### Training Details
|
27 |
+
- **Framework:** PyTorch
|
28 |
+
- **Base Model:** ResNet-50 (pretrained on ImageNet)
|
29 |
+
- **Dataset:** A balanced dataset of acne images annotated with severity levels (Severity 1 to 5).
|
30 |
+
- **Preprocessing:** Images resized to 224x224 pixels, normalized using ImageNet statistics (mean: `[0.485, 0.456, 0.406]`, std: `[0.229, 0.224, 0.225]`).
|
31 |
+
- **Optimizer:** Adam with a learning rate of 0.001.
|
32 |
+
- **Loss Function:** CrossEntropyLoss.
|
33 |
+
- **Epochs:** 10.
|
34 |
+
- **Validation Accuracy:** 0.85 (on a held-out validation set).
|
35 |
+
|
36 |
+
## Intended Use
|
37 |
+
|
38 |
+
This model is intended for educational purposes and demonstrates image classification for medical images. It should not be used for clinical decision-making without further validation.
|
39 |
+
|
40 |
+
## Example Usage
|
41 |
+
|
42 |
+
You can use this model via the Hugging Face Transformers pipeline for inference. Ensure you have the `transformers` library installed:
|
43 |
|
44 |
+
```bash
|
45 |
+
pip install transformers
|
|
|
|
|
|
|
|
|
|
best_resnet50_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71a9075d20e585c4182626846ac0343ae23050bbf52be62b4d393ccc41ac5b24
|
3 |
+
size 94379978
|
config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
1 |
{
|
2 |
+
"num_labels": 4,
|
3 |
+
"model_type": "resnet",
|
4 |
+
"architectures": ["ResNetForImageClassification"],
|
5 |
+
"hidden_size": 2048,
|
6 |
+
"labels": ["level0", "level1", "level2", "level3"]
|
7 |
+
}
|