|
# face-parsing.PyTorch |
|
|
|
<p align="center"> |
|
<a href="https://github.com/zllrunning/face-parsing.PyTorch"> |
|
<img class="page-image" src="https://github.com/zllrunning/face-parsing.PyTorch/blob/master/6.jpg" > |
|
</a> |
|
</p> |
|
|
|
### Contents |
|
- [Training](#training) |
|
- [Demo](#Demo) |
|
- [References](#references) |
|
|
|
## Training |
|
|
|
1. Prepare training data: |
|
-- download [CelebAMask-HQ dataset](https://github.com/switchablenorms/CelebAMask-HQ) |
|
|
|
-- change file path in the `prepropess_data.py` and run |
|
```Shell |
|
python prepropess_data.py |
|
``` |
|
|
|
2. Train the model using CelebAMask-HQ dataset: |
|
Just run the train script: |
|
``` |
|
$ CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py |
|
``` |
|
|
|
If you do not wish to train the model, you can download [our pre-trained model](https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812) and save it in `res/cp`. |
|
|
|
|
|
## Demo |
|
1. Evaluate the trained model using: |
|
```Shell |
|
# evaluate using GPU |
|
python test.py |
|
``` |
|
|
|
## Face makeup using parsing maps |
|
[**face-makeup.PyTorch**](https://github.com/zllrunning/face-makeup.PyTorch) |
|
<table> |
|
|
|
<tr> |
|
<th> </th> |
|
<th>Hair</th> |
|
<th>Lip</th> |
|
</tr> |
|
|
|
<!-- Line 1: Original Input --> |
|
<tr> |
|
<td><em>Original Input</em></td> |
|
<td><img src="makeup/116_ori.png" height="256" width="256" alt="Original Input"></td> |
|
<td><img src="makeup/116_lip_ori.png" height="256" width="256" alt="Original Input"></td> |
|
</tr> |
|
|
|
<!-- Line 3: Color --> |
|
<tr> |
|
<td>Color</td> |
|
<td><img src="makeup/116_1.png" height="256" width="256" alt="Color"></td> |
|
<td><img src="makeup/116_3.png" height="256" width="256" alt="Color"></td> |
|
</tr> |
|
|
|
</table> |
|
|
|
|
|
## References |
|
- [BiSeNet](https://github.com/CoinCheung/BiSeNet) |