Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: ahxt/llama2_xs_460M_experimental
|
3 |
+
datasets:
|
4 |
+
- Redpajama
|
5 |
+
inference: false
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
metrics:
|
9 |
+
- MMLU
|
10 |
+
model_creator: ahxt
|
11 |
+
model_name: llama2_xs_460M_experimental
|
12 |
+
pipeline_tag: text-generation
|
13 |
+
quantized_by: afrideva
|
14 |
+
tags:
|
15 |
+
- llama2
|
16 |
+
- llama-2
|
17 |
+
- llama
|
18 |
+
- llama2 architecture
|
19 |
+
- gguf
|
20 |
+
- ggml
|
21 |
+
- quantized
|
22 |
+
- q2_k
|
23 |
+
- q3_k_m
|
24 |
+
- q4_k_m
|
25 |
+
- q5_k_m
|
26 |
+
- q6_k
|
27 |
+
- q8_0
|
28 |
+
---
|
29 |
+
# ahxt/llama2_xs_460M_experimental-GGUF
|
30 |
+
|
31 |
+
Quantized GGUF model files for [llama2_xs_460M_experimental](https://huggingface.co/ahxt/llama2_xs_460M_experimental) from [ahxt](https://huggingface.co/ahxt)
|
32 |
+
|
33 |
+
|
34 |
+
| Name | Quant method | Size |
|
35 |
+
| ---- | ---- | ---- |
|
36 |
+
| [llama2_xs_460m_experimental.fp16.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.fp16.gguf) | fp16 | 925.45 MB |
|
37 |
+
| [llama2_xs_460m_experimental.q2_k.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.q2_k.gguf) | q2_k | 212.56 MB |
|
38 |
+
| [llama2_xs_460m_experimental.q3_k_m.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.q3_k_m.gguf) | q3_k_m | 238.87 MB |
|
39 |
+
| [llama2_xs_460m_experimental.q4_k_m.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.q4_k_m.gguf) | q4_k_m | 288.51 MB |
|
40 |
+
| [llama2_xs_460m_experimental.q5_k_m.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.q5_k_m.gguf) | q5_k_m | 333.29 MB |
|
41 |
+
| [llama2_xs_460m_experimental.q6_k.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.q6_k.gguf) | q6_k | 380.87 MB |
|
42 |
+
| [llama2_xs_460m_experimental.q8_0.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.q8_0.gguf) | q8_0 | 492.67 MB |
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
## Original Model Card:
|
47 |
+
# LLaMa Lite: Reduced-Scale, Experimental Versions of LLaMA and LLaMa 2
|
48 |
+
|
49 |
+
In this series of repos, we present an open-source reproduction of Meta AI's [LLaMA](https://ai.meta.com/blog/large-language-model-llama-meta-ai/) and [LLaMa 2](https://ai.meta.com/llama/) large language models. However, with significantly reduced model sizes, the experimental version of [llama1_s](https://huggingface.co/ahxt/llama1_s_1.8B_experimental) has 1.8B parameters, and the experimental version of [llama2_xs](https://huggingface.co/ahxt/llama2_xs_460M_experimental) has 460M parameters. ('s' stands for small, while 'xs' denotes extra small).
|
50 |
+
|
51 |
+
|
52 |
+
## Dataset and Tokenization
|
53 |
+
We train our models on part of [RedPajama](https://www.together.xyz/blog/redpajama) dataset. We use the [GPT2Tokenizer](https://huggingface.co/docs/transformers/v4.31.0/en/model_doc/gpt2#transformers.GPT2Tokenizer) to tokenize the text.
|
54 |
+
|
55 |
+
|
56 |
+
### Using with HuggingFace Transformers
|
57 |
+
The experimental checkpoints can be directly loaded by [Transformers](https://huggingface.co/transformers/) library. The following code snippet shows how to load the our experimental model and generate text with it.
|
58 |
+
|
59 |
+
```python
|
60 |
+
import torch
|
61 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
62 |
+
|
63 |
+
# model_path = 'ahxt/llama2_xs_460M_experimental'
|
64 |
+
model_path = 'ahxt/llama1_s_1.8B_experimental'
|
65 |
+
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
68 |
+
model.eval()
|
69 |
+
|
70 |
+
prompt = 'Q: What is the largest bird?\nA:'
|
71 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
72 |
+
tokens = model.generate(input_ids, max_length=20)
|
73 |
+
print( tokenizer.decode(tokens[0].tolist(), skip_special_tokens=True) )
|
74 |
+
# Q: What is the largest bird?\nA: The largest bird is the bald eagle.
|
75 |
+
```
|
76 |
+
|
77 |
+
## Evaluation
|
78 |
+
|
79 |
+
We evaluate our models on the MMLU task
|
80 |
+
markdown table
|
81 |
+
| Models | #parameters |zero-shot | 5-shot |
|
82 |
+
| --- | --- | --- | --- |
|
83 |
+
| llama | 7B | 28.46 | 35.05 |
|
84 |
+
| openllama | 3B | 24.90 | 26.71 |
|
85 |
+
|TinyLlama-1.1B-step-50K-105b | 1.1B | 19.00 | 26.53 |
|
86 |
+
| llama2_xs_460M | 0.46B | 21.13 | 26.39 |
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
## Contact
|
92 |
+
This experimental version is developed by:
|
93 |
+
[Xiaotian Han](https://ahxt.github.io/) from Texas A&M University. And these experimental verisons are for research only.
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
106 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ahxt__llama2_xs_460M_experimental)
|
107 |
+
|
108 |
+
| Metric | Value |
|
109 |
+
|-----------------------|---------------------------|
|
110 |
+
| Avg. | 26.65 |
|
111 |
+
| ARC (25-shot) | 24.91 |
|
112 |
+
| HellaSwag (10-shot) | 38.47 |
|
113 |
+
| MMLU (5-shot) | 26.17 |
|
114 |
+
| TruthfulQA (0-shot) | 41.59 |
|
115 |
+
| Winogrande (5-shot) | 49.88 |
|
116 |
+
| GSM8K (5-shot) | 0.0 |
|
117 |
+
| DROP (3-shot) | 5.51 |
|