|
--- |
|
base_model: meta-llama/CodeLlama-34b-Python-hf |
|
library_name: peft |
|
license: llama2 |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
model-index: |
|
- name: AcodellamaL4Scores |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: meta-llama/CodeLlama-34b-Python-hf |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: afrias5/JustScores |
|
type: alpaca |
|
field: text |
|
|
|
dataset_prepared_path: AJustScorescodellama |
|
val_set_size: 0.10 |
|
output_dir: models/AAcodellama34bL4Scores |
|
# lora_model_dir: models/codellamaL4Scores |
|
# auto_resume_from_checkpoints: true |
|
sequence_len: 4096 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
eval_sample_packing: False |
|
adapter: lora |
|
lora_r: 4 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_modules_to_save: |
|
- embed_tokens |
|
- lm_head |
|
|
|
wandb_project: 'codellamaScores' |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_run_id: |
|
wandb_name: 'AA34bL4scores' #change |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 1 |
|
num_epochs: 4 |
|
optimizer: adamw_torch |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: |
|
tf32: false |
|
hub_model_id: afrias5/AcodellamaL4Scores |
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: false |
|
s2_attention: |
|
logging_steps: 1 |
|
warmup_steps: 10 |
|
# eval_steps: 300 |
|
saves_per_epoch: 1 |
|
save_total_limit: 12 |
|
evals_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
deepspeed: deepspeed_configs/zero3_bf16.json |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/afrias5/codellamaScores/runs/smszd62j) |
|
# AcodellamaL4Scores |
|
|
|
This model is a fine-tuned version of [meta-llama/CodeLlama-34b-Python-hf](https://huggingface.co/meta-llama/CodeLlama-34b-Python-hf) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0351 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- total_eval_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.0417 | 0.1053 | 1 | 1.8010 | |
|
| 0.5919 | 0.9474 | 9 | 0.2278 | |
|
| 0.0633 | 1.7895 | 18 | 0.0472 | |
|
| 0.0368 | 2.6842 | 27 | 0.0367 | |
|
| 0.0385 | 3.5526 | 36 | 0.0351 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.42.4 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |