sd
Browse files- tokenizeConfig.py +248 -208
tokenizeConfig.py
CHANGED
@@ -1,222 +1,262 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
def __init__(self, *, pat_str: str, mergeable_ranks: dict[bytes, int]) -> None:
|
12 |
-
"""Creates an Encoding object."""
|
13 |
-
# A regex pattern string that is used to split the input text
|
14 |
-
self.pat_str = pat_str
|
15 |
-
# A dictionary mapping token bytes to their ranks. The ranks correspond to merge priority
|
16 |
-
self.mergeable_ranks = mergeable_ranks
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
"""Encodes a string into tokens.
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
"""
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
"""Decodes a list of tokens into bytes.
|
39 |
-
|
40 |
-
>>> enc.decode_bytes([388, 372])
|
41 |
-
b'hello world'
|
42 |
"""
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
|
|
53 |
"""
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
"""
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
"""Train a BPE tokeniser on some data!"""
|
69 |
-
mergeable_ranks = bpe_train(data=training_data, vocab_size=vocab_size, pat_str=pat_str)
|
70 |
-
return OBITokenizer(pat_str=pat_str, mergeable_ranks=mergeable_ranks)
|
71 |
-
|
72 |
-
@staticmethod
|
73 |
-
def from_tiktoken(encoding):
|
74 |
-
if isinstance(encoding, str):
|
75 |
-
encoding = tiktoken.get_encoding(encoding)
|
76 |
-
return OBITokenizer(
|
77 |
-
pat_str=encoding._pat_str, mergeable_ranks=encoding._mergeable_ranks
|
78 |
-
)
|
79 |
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
mergeable_ranks: dict[bytes, int], input: bytes, visualise: Optional[str] = "colour"
|
83 |
-
) -> list[int]:
|
84 |
-
parts = [bytes([b]) for b in input]
|
85 |
-
while True:
|
86 |
-
# See the intermediate merges play out!
|
87 |
-
if visualise:
|
88 |
-
if visualise in ["colour", "color"]:
|
89 |
-
visualise_tokens(parts)
|
90 |
-
elif visualise == "simple":
|
91 |
-
print(parts)
|
92 |
-
|
93 |
-
# Iterate over all pairs and find the pair we want to merge the most
|
94 |
-
min_idx = None
|
95 |
-
min_rank = None
|
96 |
-
for i, pair in enumerate(zip(parts[:-1], parts[1:])):
|
97 |
-
rank = mergeable_ranks.get(pair[0] + pair[1])
|
98 |
-
|
99 |
-
if rank is not None and (min_rank is None or rank < min_rank):
|
100 |
-
min_idx = i
|
101 |
-
min_rank = rank
|
102 |
-
|
103 |
-
# If there were no pairs we could merge, we're done!
|
104 |
-
if min_rank is None:
|
105 |
-
break
|
106 |
-
assert min_idx is not None
|
107 |
-
|
108 |
-
# Otherwise, merge that pair and leave the rest unchanged. Then repeat.
|
109 |
-
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2 :]
|
110 |
-
|
111 |
-
if visualise:
|
112 |
-
print()
|
113 |
-
|
114 |
-
tokens = [mergeable_ranks[part] for part in parts]
|
115 |
-
return tokens
|
116 |
-
|
117 |
-
|
118 |
-
def bpe_train(
|
119 |
-
data: str, vocab_size: int, pat_str: str, visualise: Optional[str] = "colour"
|
120 |
-
) -> dict[bytes, int]:
|
121 |
-
# First, add tokens for each individual byte value
|
122 |
-
if vocab_size < 2**8:
|
123 |
-
raise ValueError("vocab_size must be at least 256, so we can encode all bytes")
|
124 |
-
ranks = {}
|
125 |
-
for i in range(2**8):
|
126 |
-
ranks[bytes([i])] = i
|
127 |
-
|
128 |
-
# Splinter up our data into lists of bytes
|
129 |
-
# data = "Hello world"
|
130 |
-
# words = [
|
131 |
-
# [b'H', b'e', b'l', b'l', b'o'],
|
132 |
-
# [b' ', b'w', b'o', b'r', b'l', b'd']
|
133 |
-
# ]
|
134 |
-
words: list[list[bytes]] = [
|
135 |
-
[bytes([b]) for b in word.encode("utf-8")] for word in regex.findall(pat_str, data)
|
136 |
-
]
|
137 |
-
|
138 |
-
# Now, use our data to figure out which merges we should make
|
139 |
-
while len(ranks) < vocab_size:
|
140 |
-
# Find the most common pair. This will become our next token
|
141 |
-
stats = collections.Counter()
|
142 |
-
for piece in words:
|
143 |
-
for pair in zip(piece[:-1], piece[1:]):
|
144 |
-
stats[pair] += 1
|
145 |
-
|
146 |
-
most_common_pair = max(stats, key=lambda x: stats[x])
|
147 |
-
token_bytes = most_common_pair[0] + most_common_pair[1]
|
148 |
-
token = len(ranks)
|
149 |
-
# Add the new token!
|
150 |
-
ranks[token_bytes] = token
|
151 |
-
|
152 |
-
# Now merge that most common pair in all the words. That is, update our training data
|
153 |
-
# to reflect our decision to make that pair into a new token.
|
154 |
-
new_words = []
|
155 |
-
for word in words:
|
156 |
-
new_word = []
|
157 |
-
i = 0
|
158 |
-
while i < len(word) - 1:
|
159 |
-
if (word[i], word[i + 1]) == most_common_pair:
|
160 |
-
# We found our pair! Merge it
|
161 |
-
new_word.append(token_bytes)
|
162 |
-
i += 2
|
163 |
-
else:
|
164 |
-
new_word.append(word[i])
|
165 |
-
i += 1
|
166 |
-
if i == len(word) - 1:
|
167 |
-
new_word.append(word[i])
|
168 |
-
new_words.append(new_word)
|
169 |
-
words = new_words
|
170 |
-
|
171 |
-
# See the intermediate merges play out!
|
172 |
-
if visualise:
|
173 |
-
print(f"The current most common pair is {most_common_pair[0]} + {most_common_pair[1]}")
|
174 |
-
print(f"So we made {token_bytes} our {len(ranks)}th token")
|
175 |
-
if visualise in ["colour", "color"]:
|
176 |
-
print("Now the first fifty words in our training data look like:")
|
177 |
-
visualise_tokens([token for word in words[:50] for token in word])
|
178 |
-
elif visualise == "simple":
|
179 |
-
print("Now the first twenty words in our training data look like:")
|
180 |
-
for word in words[:20]:
|
181 |
-
print(word)
|
182 |
-
print("\n")
|
183 |
-
|
184 |
-
return ranks
|
185 |
-
|
186 |
-
|
187 |
-
def visualise_tokens(token_values: list[bytes]) -> None:
|
188 |
-
background = [f"\u001b[48;5;{i}m" for i in [167, 179, 185, 77, 80, 68, 134]]
|
189 |
-
# If token boundaries do not occur at unicode character boundaries, it's unclear how best to
|
190 |
-
# visualise the token. Here, we'll just use the unicode replacement character to represent some
|
191 |
-
# fraction of a character.
|
192 |
-
unicode_token_values = [x.decode("utf-8", errors="replace") for x in token_values]
|
193 |
-
|
194 |
-
running_length = 0
|
195 |
-
last_color = None
|
196 |
-
for token in unicode_token_values:
|
197 |
-
color = background[running_length % len(background)]
|
198 |
-
if color == last_color:
|
199 |
-
color = background[(running_length + 1) % len(background)]
|
200 |
-
assert color != last_color
|
201 |
-
last_color = color
|
202 |
-
running_length += len(token)
|
203 |
-
print(color + token, end="")
|
204 |
-
print("\u001b[0m")
|
205 |
-
|
206 |
-
|
207 |
-
def train_simple_encoding():
|
208 |
-
gpt2_pattern = (
|
209 |
-
r"""'s|'t|'re|'ve|'m|'ll|'d| ?[\p{L}]+| ?[\p{N}]+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
210 |
-
)
|
211 |
-
with open(__file__, "r") as f:
|
212 |
-
data = f.read()
|
213 |
-
|
214 |
-
enc = OBITokenizer.train(data, vocab_size=600, pat_str=gpt2_pattern)
|
215 |
-
|
216 |
-
print("This is the sequence of merges performed in order to encode 'hello world':")
|
217 |
-
tokens = enc.encode("hello world")
|
218 |
-
assert enc.decode(tokens) == "hello world"
|
219 |
-
assert enc.decode_bytes(tokens) == b"hello world"
|
220 |
-
assert enc.decode_tokens_bytes(tokens) == [b"hello", b" world"]
|
221 |
-
|
222 |
-
return enc
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
+
import os
|
4 |
+
from shutil import copyfile
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
6 |
+
|
7 |
+
import sentencepiece as spm
|
8 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
15 |
+
|
16 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
17 |
+
"vocab_file": {},
|
18 |
+
"tokenizer_file": {},
|
19 |
+
}
|
20 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
21 |
+
|
22 |
+
|
23 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
24 |
+
"""
|
25 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
26 |
+
Args:
|
27 |
+
vocab_file (`str`):
|
28 |
+
Path to the vocabulary file.
|
29 |
+
"""
|
30 |
+
|
31 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
32 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
33 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
34 |
+
model_input_names = ["input_ids", "attention_mask"]
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
vocab_file,
|
39 |
+
unk_token="<unk>",
|
40 |
+
bos_token="<s>",
|
41 |
+
eos_token="</s>",
|
42 |
+
pad_token=None,
|
43 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
44 |
+
add_bos_token=True,
|
45 |
+
add_eos_token=False,
|
46 |
+
clean_up_tokenization_spaces=False,
|
47 |
+
**kwargs,
|
48 |
+
):
|
49 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
50 |
+
bos_token = (
|
51 |
+
AddedToken(bos_token, lstrip=False, rstrip=False)
|
52 |
+
if isinstance(bos_token, str)
|
53 |
+
else bos_token
|
54 |
+
)
|
55 |
+
eos_token = (
|
56 |
+
AddedToken(eos_token, lstrip=False, rstrip=False)
|
57 |
+
if isinstance(eos_token, str)
|
58 |
+
else eos_token
|
59 |
+
)
|
60 |
+
unk_token = (
|
61 |
+
AddedToken(unk_token, lstrip=False, rstrip=False)
|
62 |
+
if isinstance(unk_token, str)
|
63 |
+
else unk_token
|
64 |
+
)
|
65 |
+
pad_token = (
|
66 |
+
AddedToken(pad_token, lstrip=False, rstrip=False)
|
67 |
+
if isinstance(pad_token, str)
|
68 |
+
else pad_token
|
69 |
+
)
|
70 |
+
super().__init__(
|
71 |
+
bos_token=bos_token,
|
72 |
+
eos_token=eos_token,
|
73 |
+
unk_token=unk_token,
|
74 |
+
pad_token=pad_token,
|
75 |
+
add_bos_token=add_bos_token,
|
76 |
+
add_eos_token=add_eos_token,
|
77 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
78 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
79 |
+
**kwargs,
|
80 |
+
)
|
81 |
+
self.vocab_file = vocab_file
|
82 |
+
self.add_bos_token = add_bos_token
|
83 |
+
self.add_eos_token = add_eos_token
|
84 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
85 |
+
self.sp_model.Load(vocab_file)
|
86 |
+
|
87 |
+
def __getstate__(self):
|
88 |
+
state = self.__dict__.copy()
|
89 |
+
state["sp_model"] = None
|
90 |
+
return state
|
91 |
+
|
92 |
+
def __setstate__(self, d):
|
93 |
+
self.__dict__ = d
|
94 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
95 |
+
self.sp_model.Load(self.vocab_file)
|
96 |
+
|
97 |
+
@property
|
98 |
+
def vocab_size(self):
|
99 |
+
"""Returns vocab size"""
|
100 |
+
return self.sp_model.get_piece_size()
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
def get_vocab(self):
|
106 |
+
"""Returns vocab as a dict"""
|
107 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
108 |
+
vocab.update(self.added_tokens_encoder)
|
109 |
+
return vocab
|
110 |
+
|
111 |
+
def _tokenize(self, text):
|
112 |
+
"""Returns a tokenized string."""
|
113 |
+
return self.sp_model.encode(text, out_type=str)
|
114 |
+
|
115 |
+
def _convert_token_to_id(self, token):
|
116 |
+
"""Converts a token (str) in an id using the vocab."""
|
117 |
+
return self.sp_model.piece_to_id(token)
|
118 |
+
|
119 |
+
def _convert_id_to_token(self, index):
|
120 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
121 |
+
token = self.sp_model.IdToPiece(index)
|
122 |
+
return token
|
123 |
+
|
124 |
+
def convert_tokens_to_string(self, tokens):
|
125 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
126 |
+
current_sub_tokens = []
|
127 |
+
out_string = ""
|
128 |
+
prev_is_special = False
|
129 |
+
for i, token in enumerate(tokens):
|
130 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
131 |
+
if token in self.all_special_tokens:
|
132 |
+
if not prev_is_special and i != 0:
|
133 |
+
out_string += " "
|
134 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
135 |
+
prev_is_special = True
|
136 |
+
current_sub_tokens = []
|
137 |
+
else:
|
138 |
+
current_sub_tokens.append(token)
|
139 |
+
prev_is_special = False
|
140 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
141 |
+
return out_string
|
142 |
+
|
143 |
+
def _encode(self,text):
|
144 |
+
tokens = self._tokenize(text)
|
145 |
+
ids = self._convert_token_to_id(tokens)
|
146 |
+
return ids
|
147 |
+
|
148 |
+
def _decode(self,ids):
|
149 |
+
tokens = self._convert_id_to_token(ids)
|
150 |
+
text = self.convert_tokens_to_string(tokens)
|
151 |
+
return text
|
152 |
+
|
153 |
+
def save_vocabulary(
|
154 |
+
self, save_directory, filename_prefix: Optional[str] = None
|
155 |
+
) -> Tuple[str]:
|
156 |
+
"""
|
157 |
+
Save the vocabulary and special tokens file to a directory.
|
158 |
+
Args:
|
159 |
+
save_directory (`str`):
|
160 |
+
The directory in which to save the vocabulary.
|
161 |
+
Returns:
|
162 |
+
`Tuple(str)`: Paths to the files saved.
|
163 |
+
"""
|
164 |
+
if not os.path.isdir(save_directory):
|
165 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
166 |
+
return
|
167 |
+
out_vocab_file = os.path.join(
|
168 |
+
save_directory,
|
169 |
+
(filename_prefix + "-" if filename_prefix else "")
|
170 |
+
+ VOCAB_FILES_NAMES["vocab_file"],
|
171 |
+
)
|
172 |
|
173 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
174 |
+
out_vocab_file
|
175 |
+
) and os.path.isfile(self.vocab_file):
|
176 |
+
copyfile(self.vocab_file, out_vocab_file)
|
177 |
+
elif not os.path.isfile(self.vocab_file):
|
178 |
+
with open(out_vocab_file, "wb") as fi:
|
179 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
180 |
+
fi.write(content_spiece_model)
|
181 |
|
182 |
+
return (out_vocab_file,)
|
183 |
|
184 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
185 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
186 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
187 |
|
188 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
if token_ids_1 is not None:
|
191 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
192 |
|
193 |
+
return output
|
|
|
194 |
|
195 |
+
def get_special_tokens_mask(
|
196 |
+
self,
|
197 |
+
token_ids_0: List[int],
|
198 |
+
token_ids_1: Optional[List[int]] = None,
|
199 |
+
already_has_special_tokens: bool = False,
|
200 |
+
) -> List[int]:
|
201 |
"""
|
202 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
203 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
204 |
+
Args:
|
205 |
+
token_ids_0 (`List[int]`):
|
206 |
+
List of IDs.
|
207 |
+
token_ids_1 (`List[int]`, *optional*):
|
208 |
+
Optional second list of IDs for sequence pairs.
|
209 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
210 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
211 |
+
Returns:
|
212 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
|
|
|
|
|
|
|
213 |
"""
|
214 |
+
if already_has_special_tokens:
|
215 |
+
return super().get_special_tokens_mask(
|
216 |
+
token_ids_0=token_ids_0,
|
217 |
+
token_ids_1=token_ids_1,
|
218 |
+
already_has_special_tokens=True,
|
219 |
+
)
|
220 |
+
|
221 |
+
bos_token_id = [1] if self.add_bos_token else []
|
222 |
+
eos_token_id = [1] if self.add_eos_token else []
|
223 |
+
|
224 |
+
if token_ids_1 is None:
|
225 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
226 |
+
return (
|
227 |
+
bos_token_id
|
228 |
+
+ ([0] * len(token_ids_0))
|
229 |
+
+ eos_token_id
|
230 |
+
+ bos_token_id
|
231 |
+
+ ([0] * len(token_ids_1))
|
232 |
+
+ eos_token_id
|
233 |
+
)
|
234 |
|
235 |
+
def create_token_type_ids_from_sequences(
|
236 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
237 |
+
) -> List[int]:
|
238 |
"""
|
239 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
240 |
+
sequence pair mask has the following format:
|
241 |
+
```
|
242 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
243 |
+
| first sequence | second sequence |
|
244 |
+
```
|
245 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
246 |
+
Args:
|
247 |
+
token_ids_0 (`List[int]`):
|
248 |
+
List of ids.
|
249 |
+
token_ids_1 (`List[int]`, *optional*):
|
250 |
+
Optional second list of IDs for sequence pairs.
|
251 |
+
Returns:
|
252 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
253 |
"""
|
254 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
255 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
256 |
+
|
257 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
+
if token_ids_1 is not None:
|
260 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
261 |
|
262 |
+
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|