off
Browse files- modelLM.py +37 -13
modelLM.py
CHANGED
@@ -1,13 +1,18 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
4 |
-
from transformers import PreTrainedModel
|
5 |
|
|
|
|
|
|
|
|
|
6 |
class OBILanguageModel(PreTrainedModel):
|
7 |
def __init__(self, config):
|
8 |
-
super(OBILanguageModel,
|
9 |
-
self.token_embedding_table = nn.Embedding(config.vocab_size, config.hidden_size)
|
10 |
self.position_embedding_table = nn.Embedding(config.block_size, config.hidden_size)
|
|
|
11 |
|
12 |
self.transformer = nn.Transformer(
|
13 |
d_model=config.hidden_size,
|
@@ -20,21 +25,40 @@ class OBILanguageModel(PreTrainedModel):
|
|
20 |
)
|
21 |
self.ln1 = nn.LayerNorm(config.hidden_size)
|
22 |
self.ln2 = nn.LayerNorm(config.hidden_size)
|
23 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
x = tok_emb + pos_emb
|
30 |
-
x = self.transformer(x)
|
31 |
x = self.ln1(x)
|
32 |
x = self.ln2(x)
|
33 |
logits = self.lm_head(x)
|
34 |
|
35 |
-
|
36 |
-
loss = None
|
37 |
-
|
38 |
-
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
4 |
+
from transformers.modeling_utils import PreTrainedModel
|
5 |
|
6 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
7 |
+
|
8 |
+
|
9 |
+
# Define your custom language model class
|
10 |
class OBILanguageModel(PreTrainedModel):
|
11 |
def __init__(self, config):
|
12 |
+
super(OBILanguageModel,self).__init__(config)
|
13 |
+
self.token_embedding_table = nn.Embedding(config.vocab_size, config.hidden_size) # Use length of SentencePiece vocab
|
14 |
self.position_embedding_table = nn.Embedding(config.block_size, config.hidden_size)
|
15 |
+
|
16 |
|
17 |
self.transformer = nn.Transformer(
|
18 |
d_model=config.hidden_size,
|
|
|
25 |
)
|
26 |
self.ln1 = nn.LayerNorm(config.hidden_size)
|
27 |
self.ln2 = nn.LayerNorm(config.hidden_size)
|
28 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) # Use length of SentencePiece vocab
|
29 |
|
30 |
+
|
31 |
+
|
32 |
+
def forward(self, idx, targets=None):
|
33 |
+
tok_emb = self.token_embedding_table(idx)
|
34 |
+
pos_emb = None # Initialize pos_emb to None
|
35 |
+
try:
|
36 |
+
pos_emb = self.position_embedding_table(torch.arange(idx.size(1), device='cpu'))
|
37 |
+
except IndexError as e:
|
38 |
+
# Handle the IndexError by initializing pos_emb with zeros
|
39 |
+
print(f"IndexError: {e}")
|
40 |
+
print(f"idx.size(1): {idx.size(1)}")
|
41 |
+
print(f"Positional embedding table shape: {self.position_embedding_table.weight.shape}")
|
42 |
+
pos_emb = torch.zeros((idx.size(1), self.config.hidden_size), device=device)
|
43 |
|
44 |
x = tok_emb + pos_emb
|
45 |
+
x = self.transformer(x, x)
|
46 |
x = self.ln1(x)
|
47 |
x = self.ln2(x)
|
48 |
logits = self.lm_head(x)
|
49 |
|
50 |
+
# Always compute the loss, and set it to None if targets are not provided
|
51 |
+
loss = F.cross_entropy(logits.view(-1, self.config.vocab_size), targets.view(-1)) if targets is not None else None
|
52 |
+
|
53 |
+
return (logits, loss)
|
54 |
+
|
55 |
|
56 |
+
def generate(self, idx, max_new_tokens):
|
57 |
+
for _ in range(max_new_tokens):
|
58 |
+
idx_cond = idx[:, -self.config.block_size:]
|
59 |
+
logits, loss = self(idx_cond)
|
60 |
+
logits = logits[:, -1, :]
|
61 |
+
probs = F.softmax(logits, dim=-1)
|
62 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
63 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
64 |
+
return idx
|