afbudiman's picture
update model card README.md
96ff831
|
raw
history blame
2.33 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - indonlu
metrics:
  - accuracy
  - f1
model-index:
  - name: distilled-optimized-indobert-classification
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: indonlu
          type: indonlu
          args: smsa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8944444444444445
          - name: F1
            type: f1
            value: 0.89395273315396

distilled-optimized-indobert-classification

This model is a fine-tuned version of distilbert-base-uncased on the indonlu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7098
  • Accuracy: 0.8944
  • F1: 0.8940

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.315104717136378e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 33
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 9

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.5386 1.0 688 1.0026 0.8325 0.8332
0.8165 2.0 1376 0.7364 0.8786 0.8782
0.4755 3.0 2064 0.8695 0.8794 0.8767
0.3011 4.0 2752 0.8100 0.8921 0.8899
0.1963 5.0 3440 0.8074 0.8960 0.8954
0.1312 6.0 4128 0.8235 0.8897 0.8906
0.0974 7.0 4816 0.7395 0.9063 0.9067
0.0716 8.0 5504 0.7185 0.8960 0.8953
0.0512 9.0 6192 0.7098 0.8944 0.8940

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1