fresh-2-layer-copa / README.md
afaji's picture
fresh-2-layer-copa
2c9e2d9 verified
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fresh-2-layer-copa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fresh-2-layer-copa
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3801
- Accuracy: 0.2980
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 321
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 63 | 1.3862 | 0.2071 |
| No log | 2.0 | 126 | 1.3862 | 0.2071 |
| No log | 3.0 | 189 | 1.3862 | 0.2525 |
| No log | 4.0 | 252 | 1.3862 | 0.2374 |
| No log | 5.0 | 315 | 1.3859 | 0.2626 |
| No log | 6.0 | 378 | 1.3863 | 0.2071 |
| No log | 7.0 | 441 | 1.3865 | 0.2778 |
| 0.6953 | 8.0 | 504 | 1.3861 | 0.2778 |
| 0.6953 | 9.0 | 567 | 1.3857 | 0.2071 |
| 0.6953 | 10.0 | 630 | 1.3859 | 0.2525 |
| 0.6953 | 11.0 | 693 | 1.3863 | 0.2475 |
| 0.6953 | 12.0 | 756 | 1.3863 | 0.2778 |
| 0.6953 | 13.0 | 819 | 1.3863 | 0.2576 |
| 0.6953 | 14.0 | 882 | 1.3834 | 0.2778 |
| 0.6953 | 15.0 | 945 | 1.3865 | 0.2576 |
| 0.6897 | 16.0 | 1008 | 1.3856 | 0.2677 |
| 0.6897 | 17.0 | 1071 | 1.3912 | 0.2273 |
| 0.6897 | 18.0 | 1134 | 1.3801 | 0.2980 |
| 0.6897 | 19.0 | 1197 | 1.3878 | 0.2020 |
| 0.6897 | 20.0 | 1260 | 1.3961 | 0.2525 |
### Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0