afaji's picture
update model card README.md
7da3d54
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: fine-tuned-IndoNLI-Basic-with-xlm-roberta-base
    results: []

fine-tuned-IndoNLI-Basic-with-xlm-roberta-base

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1133
  • Accuracy: 0.4665

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1127 1.0 161 1.1041 0.2918
1.1006 2.0 322 1.0960 0.3409
1.0368 3.0 483 1.0347 0.4201
0.9914 4.0 644 0.9819 0.4593
0.9718 5.0 805 1.0013 0.4297
0.9628 6.0 966 0.9786 0.4861
0.9565 7.0 1127 0.9940 0.5102
0.9418 8.0 1288 1.0082 0.4998
0.936 9.0 1449 1.0298 0.4574
0.9027 10.0 1610 1.0522 0.4770
0.8861 11.0 1771 1.0756 0.4665
0.9045 12.0 1932 1.0986 0.4488
0.8764 13.0 2093 1.0949 0.4315
0.8703 14.0 2254 1.1140 0.4729
0.8539 15.0 2415 1.1241 0.4511
0.8619 16.0 2576 1.1133 0.4665

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.2.0
  • Tokenizers 0.13.2