Upload model
Browse files- modelling_cxrmate_ed.py +10 -3
modelling_cxrmate_ed.py
CHANGED
@@ -1111,9 +1111,16 @@ class MIMICIVEDCXRMultimodalModel(VisionEncoderDecoderModel):
|
|
1111 |
connect.sql(f"CREATE TABLE {k}_study_ids AS SELECT * FROM df")
|
1112 |
|
1113 |
@staticmethod
|
1114 |
-
def get_dataset(split, transforms, database_path, mimic_cxr_jpg_dir, max_images_per_study=5):
|
1115 |
-
|
1116 |
-
records
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1117 |
|
1118 |
dataset = StudyIDEDStayIDSubset(
|
1119 |
mimic_iv_duckdb_path=database_path,
|
|
|
1111 |
connect.sql(f"CREATE TABLE {k}_study_ids AS SELECT * FROM df")
|
1112 |
|
1113 |
@staticmethod
|
1114 |
+
def get_dataset(split, transforms, database_path, mimic_cxr_jpg_dir, max_images_per_study=5, records=None):
|
1115 |
+
|
1116 |
+
if records is None:
|
1117 |
+
|
1118 |
+
# This is the setup for CXRs + all effective inputs - medicine reconciliation:
|
1119 |
+
records = EDCXRSubjectRecords(database_path=database_path, time_delta_map=lambda x: 1 / math.sqrt(x + 1))
|
1120 |
+
|
1121 |
+
records.ed_module_tables = {k: records.ed_module_tables[k] for k in ['edstays', 'triage', 'vitalsign']}
|
1122 |
+
records.mimic_cxr_tables = {k: records.mimic_cxr_tables[k] for k in ['mimic_cxr_sectioned']}
|
1123 |
+
records.mimic_cxr_tables['mimic_cxr_sectioned'].text_columns = ['indication', 'history']
|
1124 |
|
1125 |
dataset = StudyIDEDStayIDSubset(
|
1126 |
mimic_iv_duckdb_path=database_path,
|