cxrmate-ed / lmdb_jpg.py
anicolson's picture
Upload model
453bf0e verified
raw
history blame
1.99 kB
import multiprocessing
import duckdb
import lmdb
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from .dataset import mimic_cxr_image_path
class JPGDataset(Dataset):
def __init__(self, df, jpg_path):
self.df = df
self.jpg_path = jpg_path
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
row = self.df.iloc[idx]
jpg_path = mimic_cxr_image_path(self.jpg_path, row['subject_id'], row['study_id'], row['dicom_id'], 'jpg')
# Convert key to bytes:
key = bytes(row['dicom_id'], 'utf-8')
# Read the .jpg file as bytes:
with open(jpg_path, 'rb') as f:
image = f.read()
return {
'keys': key,
'images': image,
}
def prepare_mimic_cxr_jpg_lmdb(mimic_iv_duckdb_path, mimic_cxr_jpg_path, mimic_cxr_jpg_lmdb_path, map_size_tb, num_workers=None):
num_workers = num_workers if num_workers is not None else multiprocessing.cpu_count()
connect = duckdb.connect(mimic_iv_duckdb_path, read_only=True)
df = connect.sql("SELECT DISTINCT ON(dicom_id) subject_id, study_id, dicom_id FROM mimic_cxr").df()
connect.close()
# Map size:
map_size = int(map_size_tb * (1024 ** 4))
assert isinstance(map_size, int)
print(f'Map size: {map_size}')
dataset = JPGDataset(df, mimic_cxr_jpg_path)
dataloader = DataLoader(
dataset,
batch_size=num_workers,
shuffle=False,
num_workers=num_workers,
prefetch_factor=1,
collate_fn=lambda x: x,
)
env = lmdb.open(mimic_cxr_jpg_lmdb_path, map_size=map_size, readonly=False)
for batch in tqdm(dataloader):
for i in batch:
with env.begin(write=True) as txn:
value = txn.get(b'image_keys')
if value is None:
txn.put(i['keys'], i['images'])
env.sync()
env.close()