aegon-h commited on
Commit
cbf4b7f
0 Parent(s):

Duplicate from aegon-h/finetuned-gemma-2b

Browse files
.gitattributes ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ gemma-2b.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ extra_gated_heading: "Access Gemma on Hugging Face"
5
+ extra_gated_prompt: "To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately."
6
+ extra_gated_button_content: "Acknowledge license"
7
+ license: other
8
+ license_name: gemma-terms-of-use
9
+ license_link: https://ai.google.dev/gemma/terms
10
+ inference: false
11
+ ---
12
+
13
+ # Gemma Model Card
14
+
15
+ **Original Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
16
+
17
+ This model card corresponds to the 2B base version of the Gemma model.
18
+
19
+ **Original Resources and Technical Documentation**:
20
+
21
+ * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
22
+ * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma)
23
+ * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335)
24
+
25
+ **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent)
26
+
27
+ **Original Authors**: Google
28
+
29
+
30
+ ### Description
31
+
32
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
33
+ built from the same research and technology used to create the Gemini models.
34
+ They are text-to-text, decoder-only large language models, available in English,
35
+ with open weights, pre-trained variants, and instruction-tuned variants. Gemma
36
+ models are well-suited for a variety of text generation tasks, including
37
+ question answering, summarization, and reasoning. Their relatively small size
38
+ makes it possible to deploy them in environments with limited resources such as
39
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
40
+ state of the art AI models and helping foster innovation for everyone.
41
+
42
+ ### Usage
43
+
44
+ Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
45
+
46
+
47
+
48
+
49
+ #### Running the model on a CPU
50
+
51
+
52
+ ```python
53
+ from transformers import AutoTokenizer, AutoModelForCausalLM
54
+
55
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
56
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
57
+
58
+ input_text = "Write me a poem about Machine Learning."
59
+ input_ids = tokenizer(**input_text, return_tensors="pt")
60
+
61
+ outputs = model.generate(input_ids)
62
+ print(tokenizer.decode(outputs[0]))
63
+ ```
64
+
65
+
66
+ #### Running the model on a single / multi GPU
67
+
68
+
69
+ ```python
70
+ # pip install accelerate
71
+ from transformers import AutoTokenizer, AutoModelForCausalLM
72
+
73
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
74
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto")
75
+
76
+ input_text = "Write me a poem about Machine Learning."
77
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
78
+
79
+ outputs = model.generate(**input_ids)
80
+ print(tokenizer.decode(outputs[0]))
81
+ ```
82
+
83
+
84
+ #### Running the model on a GPU using different precisions
85
+
86
+ * _Using `torch.float16`_
87
+
88
+ ```python
89
+ # pip install accelerate
90
+ from transformers import AutoTokenizer, AutoModelForCausalLM
91
+
92
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
93
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.float16)
94
+
95
+ input_text = "Write me a poem about Machine Learning."
96
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
97
+
98
+ outputs = model.generate(**input_ids)
99
+ print(tokenizer.decode(outputs[0]))
100
+ ```
101
+
102
+ * _Using `torch.bfloat16`_
103
+
104
+ ```python
105
+ # pip install accelerate
106
+ from transformers import AutoTokenizer, AutoModelForCausalLM
107
+
108
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
109
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.bfloat16)
110
+
111
+ input_text = "Write me a poem about Machine Learning."
112
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
113
+
114
+ outputs = model.generate(**input_ids)
115
+ print(tokenizer.decode(outputs[0]))
116
+ ```
117
+
118
+ #### Quantized Versions through `bitsandbytes`
119
+
120
+ * _Using 8-bit precision (int8)_
121
+
122
+ ```python
123
+ # pip install bitsandbytes accelerate
124
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
125
+
126
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
127
+
128
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
129
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config)
130
+
131
+ input_text = "Write me a poem about Machine Learning."
132
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
133
+
134
+ outputs = model.generate(**input_ids)
135
+ print(tokenizer.decode(outputs[0]))
136
+ ```
137
+
138
+ * _Using 4-bit precision_
139
+
140
+ ```python
141
+ # pip install bitsandbytes accelerate
142
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
143
+
144
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
145
+
146
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
147
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config)
148
+
149
+ input_text = "Write me a poem about Machine Learning."
150
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
151
+
152
+ outputs = model.generate(**input_ids)
153
+ print(tokenizer.decode(outputs[0]))
154
+ ```
155
+
156
+
157
+ #### Other optimizations
158
+
159
+ * _Flash Attention 2_
160
+
161
+ First make sure to install `flash-attn` in your environment `pip install flash-attn`
162
+
163
+ ```diff
164
+ model = AutoModelForCausalLM.from_pretrained(
165
+ model_id,
166
+ torch_dtype=torch.float16,
167
+ + attn_implementation="flash_attention_2"
168
+ ).to(0)
169
+ ```
170
+
171
+ ### Inputs and outputs
172
+
173
+ * **Input:** Text string, such as a question, a prompt, or a document to be
174
+ summarized.
175
+ * **Output:** Generated English-language text in response to the input, such
176
+ as an answer to a question, or a summary of a document.
177
+
178
+
179
+
180
+ ## Usage and Limitations
181
+
182
+ These models have certain limitations that users should be aware of.
183
+
184
+ ### Intended Usage
185
+
186
+ Open Large Language Models (LLMs) have a wide range of applications across
187
+ various industries and domains. The following list of potential uses is not
188
+ comprehensive. The purpose of this list is to provide contextual information
189
+ about the possible use-cases that the model creators considered as part of model
190
+ training and development.
191
+
192
+ * Content Creation and Communication
193
+ * Text Generation: These models can be used to generate creative text formats
194
+ such as poems, scripts, code, marketing copy, and email drafts.
195
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
196
+ service, virtual assistants, or interactive applications.
197
+ * Text Summarization: Generate concise summaries of a text corpus, research
198
+ papers, or reports.
199
+ * Research and Education
200
+ * Natural Language Processing (NLP) Research: These models can serve as a
201
+ foundation for researchers to experiment with NLP techniques, develop
202
+ algorithms, and contribute to the advancement of the field.
203
+ * Language Learning Tools: Support interactive language learning experiences,
204
+ aiding in grammar correction or providing writing practice.
205
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
206
+ by generating summaries or answering questions about specific topics.
207
+
208
+ ### Limitations
209
+
210
+ * Training Data
211
+ * The quality and diversity of the training data significantly influence the
212
+ model's capabilities. Biases or gaps in the training data can lead to
213
+ limitations in the model's responses.
214
+ * The scope of the training dataset determines the subject areas the model can
215
+ handle effectively.
216
+ * Context and Task Complexity
217
+ * LLMs are better at tasks that can be framed with clear prompts and
218
+ instructions. Open-ended or highly complex tasks might be challenging.
219
+ * A model's performance can be influenced by the amount of context provided
220
+ (longer context generally leads to better outputs, up to a certain point).
221
+ * Language Ambiguity and Nuance
222
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
223
+ nuances, sarcasm, or figurative language.
224
+ * Factual Accuracy
225
+ * LLMs generate responses based on information they learned from their
226
+ training datasets, but they are not knowledge bases. They may generate
227
+ incorrect or outdated factual statements.
228
+ * Common Sense
229
+ * LLMs rely on statistical patterns in language. They might lack the ability
230
+ to apply common sense reasoning in certain situations.
231
+
232
+ ### Ethical Considerations and Risks
233
+
234
+ The development of large language models (LLMs) raises several ethical concerns.
235
+ In creating an open model, we have carefully considered the following:
236
+
237
+ * Bias and Fairness
238
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
239
+ biases embedded in the training material. These models underwent careful
240
+ scrutiny, input data pre-processing described and posterior evaluations
241
+ reported in this card.
242
+ * Misinformation and Misuse
243
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
244
+ * Guidelines are provided for responsible use with the model, see the
245
+ [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible).
246
+ * Transparency and Accountability:
247
+ * This model card summarizes details on the models' architecture,
248
+ capabilities, limitations, and evaluation processes.
249
+ * A responsibly developed open model offers the opportunity to share
250
+ innovation by making LLM technology accessible to developers and researchers
251
+ across the AI ecosystem.
252
+
253
+ Risks identified and mitigations:
254
+
255
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
256
+ (using evaluation metrics, human review) and the exploration of de-biasing
257
+ techniques during model training, fine-tuning, and other use cases.
258
+ * Generation of harmful content: Mechanisms and guidelines for content safety
259
+ are essential. Developers are encouraged to exercise caution and implement
260
+ appropriate content safety safeguards based on their specific product policies
261
+ and application use cases.
262
+ * Misuse for malicious purposes: Technical limitations and developer and
263
+ end-user education can help mitigate against malicious applications of LLMs.
264
+ Educational resources and reporting mechanisms for users to flag misuse are
265
+ provided. Prohibited uses of Gemma models are outlined in the
266
+ [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy).
267
+ * Privacy violations: Models were trained on data filtered for removal of PII
268
+ (Personally Identifiable Information). Developers are encouraged to adhere to
269
+ privacy regulations with privacy-preserving techniques.
270
+
271
+ ### Benefits
272
+
273
+ At the time of release, this family of models provides high-performance open
274
+ large language model implementations designed from the ground up for Responsible
275
+ AI development compared to similarly sized models.
276
+
277
+ Using the benchmark evaluation metrics described in this document, these models
278
+ have shown to provide superior performance to other, comparably-sized open model
279
+ alternatives.
280
+
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GemmaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 2,
8
+ "eos_token_id": 1,
9
+ "head_dim": 256,
10
+ "hidden_act": "gelu",
11
+ "hidden_size": 2048,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 16384,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "gemma",
16
+ "num_attention_heads": 8,
17
+ "num_hidden_layers": 18,
18
+ "num_key_value_heads": 1,
19
+ "pad_token_id": 0,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.38.0.dev0",
25
+ "use_cache": true,
26
+ "vocab_size": 256000
27
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.38.0.dev0"
7
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98caad07f1e1d17fede7734906d6881d4cb231e1d0cd2ebcf7fc8a6317eee4d6
3
+ size 4945242264
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3342a2f7db857bc9873c699eef1416eb2b320603e5e042a6f7736689b26382cb
3
+ size 67121608
model.safetensors.index.json ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5012344832
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
89
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
90
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
93
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
169
+ "model.norm.weight": "model-00002-of-00002.safetensors"
170
+ }
171
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<bos>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<eos>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0d908b4f9326e0998815690e325b6abbd378978553e10627924dd825db7e243
3
+ size 17477553
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6969e64047744a44bb3abfb5c50f8de0f7ed8b571d5444426ef931f651d1a0ef
3
+ size 4241111
tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<bos>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "<eos>",
41
+ "legacy": null,
42
+ "model_max_length": 1000000000000000019884624838656,
43
+ "pad_token": "<pad>",
44
+ "sp_model_kwargs": {},
45
+ "spaces_between_special_tokens": false,
46
+ "tokenizer_class": "GemmaTokenizer",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": false
49
+ }