test23042024 / README.md
adriansanz's picture
End of training
8fd763e verified
|
raw
history blame
3.1 kB
metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: stocks
    results: []

stocks

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7709
  • Accuracy: 0.7875
  • Precision: 0.5276
  • Recall: 0.5256
  • F1: 0.5261
  • Ratio: 0.5083

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 2
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
3.4508 0.1429 10 1.7714 0.5625 0.3772 0.3755 0.3758 0.5167
1.3131 0.2857 20 1.2703 0.6083 0.6073 0.6066 0.6066 0.4542
1.0393 0.4286 30 0.9366 0.6625 0.6623 0.6603 0.6604 0.4417
0.8129 0.5714 40 0.8434 0.7167 0.7179 0.7179 0.7167 0.5208
0.816 0.7143 50 0.9037 0.7042 0.7447 0.7122 0.6961 0.6833
0.7914 0.8571 60 0.7575 0.7583 0.7586 0.7569 0.7573 0.4542
0.7873 1.0 70 0.7795 0.75 0.7709 0.7555 0.7475 0.6208
0.6177 1.1429 80 0.7027 0.7917 0.7914 0.7910 0.7911 0.4708
0.5429 1.2857 90 0.7100 0.7917 0.7915 0.792 0.7915 0.4958
0.5314 1.4286 100 0.7451 0.7875 0.5276 0.5256 0.5261 0.5083
0.5945 1.5714 110 0.7605 0.8 0.5358 0.5324 0.5338 0.4542
0.661 1.7143 120 0.7722 0.7792 0.5215 0.5195 0.5204 0.4917
0.6144 1.8571 130 0.7688 0.7875 0.5273 0.5253 0.5260 0.5
0.5695 2.0 140 0.7709 0.7875 0.5276 0.5256 0.5261 0.5083

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1