metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: VICH_300524_epoch_3
results: []
VICH_300524_epoch_3
This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3866
- Accuracy: 0.954
- Precision: 0.9552
- Recall: 0.954
- F1: 0.9540
- Ratio: 0.474
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 47
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 4
- num_epochs: 1
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
---|---|---|---|---|---|---|---|---|
0.339 | 0.0157 | 10 | 0.4216 | 0.945 | 0.9453 | 0.9450 | 0.9450 | 0.487 |
0.3573 | 0.0314 | 20 | 0.4397 | 0.943 | 0.9430 | 0.943 | 0.9430 | 0.501 |
0.4019 | 0.0472 | 30 | 0.4330 | 0.945 | 0.9452 | 0.9450 | 0.9450 | 0.489 |
0.3443 | 0.0629 | 40 | 0.4368 | 0.942 | 0.9434 | 0.942 | 0.9420 | 0.472 |
0.3805 | 0.0786 | 50 | 0.4335 | 0.933 | 0.9331 | 0.933 | 0.9330 | 0.507 |
0.3837 | 0.0943 | 60 | 0.4273 | 0.938 | 0.9380 | 0.938 | 0.9380 | 0.498 |
0.3428 | 0.1101 | 70 | 0.4313 | 0.94 | 0.9403 | 0.94 | 0.9400 | 0.488 |
0.3954 | 0.1258 | 80 | 0.4323 | 0.945 | 0.9458 | 0.9450 | 0.9450 | 0.479 |
0.4144 | 0.1415 | 90 | 0.4299 | 0.94 | 0.9400 | 0.94 | 0.9400 | 0.502 |
0.3481 | 0.1572 | 100 | 0.4249 | 0.939 | 0.9391 | 0.9390 | 0.9390 | 0.491 |
0.3825 | 0.1730 | 110 | 0.4293 | 0.942 | 0.9420 | 0.942 | 0.9420 | 0.498 |
0.3605 | 0.1887 | 120 | 0.4130 | 0.949 | 0.9498 | 0.9490 | 0.9490 | 0.479 |
0.4028 | 0.2044 | 130 | 0.4105 | 0.948 | 0.9490 | 0.948 | 0.9480 | 0.476 |
0.3729 | 0.2201 | 140 | 0.4324 | 0.939 | 0.9391 | 0.9390 | 0.9390 | 0.507 |
0.3611 | 0.2358 | 150 | 0.4255 | 0.937 | 0.9371 | 0.937 | 0.9370 | 0.491 |
0.3683 | 0.2516 | 160 | 0.4290 | 0.943 | 0.9443 | 0.9430 | 0.9430 | 0.473 |
0.351 | 0.2673 | 170 | 0.4215 | 0.942 | 0.9426 | 0.942 | 0.9420 | 0.482 |
0.3697 | 0.2830 | 180 | 0.4280 | 0.944 | 0.9441 | 0.944 | 0.9440 | 0.492 |
0.3851 | 0.2987 | 190 | 0.4251 | 0.945 | 0.9461 | 0.9450 | 0.9450 | 0.475 |
0.335 | 0.3145 | 200 | 0.4276 | 0.945 | 0.9455 | 0.9450 | 0.9450 | 0.483 |
0.3744 | 0.3302 | 210 | 0.4173 | 0.947 | 0.9476 | 0.9470 | 0.9470 | 0.481 |
0.376 | 0.3459 | 220 | 0.4080 | 0.947 | 0.9478 | 0.9470 | 0.9470 | 0.479 |
0.3856 | 0.3616 | 230 | 0.4131 | 0.947 | 0.9472 | 0.9470 | 0.9470 | 0.489 |
0.4036 | 0.3774 | 240 | 0.4285 | 0.937 | 0.9370 | 0.937 | 0.9370 | 0.503 |
0.3863 | 0.3931 | 250 | 0.4159 | 0.939 | 0.9396 | 0.9390 | 0.9390 | 0.481 |
0.3619 | 0.4088 | 260 | 0.4212 | 0.944 | 0.9446 | 0.944 | 0.9440 | 0.482 |
0.4042 | 0.4245 | 270 | 0.4233 | 0.941 | 0.9411 | 0.9410 | 0.9410 | 0.493 |
0.3783 | 0.4403 | 280 | 0.4153 | 0.939 | 0.9390 | 0.9390 | 0.9390 | 0.505 |
0.3744 | 0.4560 | 290 | 0.4170 | 0.943 | 0.9447 | 0.9430 | 0.9429 | 0.469 |
0.4052 | 0.4717 | 300 | 0.4219 | 0.94 | 0.9423 | 0.94 | 0.9399 | 0.464 |
0.3531 | 0.4874 | 310 | 0.4049 | 0.949 | 0.9493 | 0.9490 | 0.9490 | 0.487 |
0.3812 | 0.5031 | 320 | 0.4042 | 0.951 | 0.9520 | 0.9510 | 0.9510 | 0.477 |
0.3587 | 0.5189 | 330 | 0.4030 | 0.95 | 0.9509 | 0.95 | 0.9500 | 0.478 |
0.3455 | 0.5346 | 340 | 0.4007 | 0.951 | 0.9512 | 0.951 | 0.9510 | 0.489 |
0.4174 | 0.5503 | 350 | 0.3989 | 0.952 | 0.9525 | 0.952 | 0.9520 | 0.484 |
0.4173 | 0.5660 | 360 | 0.4004 | 0.948 | 0.9487 | 0.948 | 0.9480 | 0.48 |
0.4012 | 0.5818 | 370 | 0.3956 | 0.95 | 0.9504 | 0.95 | 0.9500 | 0.486 |
0.388 | 0.5975 | 380 | 0.3968 | 0.949 | 0.9490 | 0.949 | 0.9490 | 0.495 |
0.3613 | 0.6132 | 390 | 0.3978 | 0.948 | 0.9482 | 0.948 | 0.9480 | 0.49 |
0.3699 | 0.6289 | 400 | 0.3988 | 0.956 | 0.9563 | 0.956 | 0.9560 | 0.488 |
0.3585 | 0.6447 | 410 | 0.3967 | 0.956 | 0.9569 | 0.956 | 0.9560 | 0.478 |
0.4017 | 0.6604 | 420 | 0.3888 | 0.959 | 0.9595 | 0.959 | 0.9590 | 0.483 |
0.3657 | 0.6761 | 430 | 0.3898 | 0.954 | 0.9541 | 0.954 | 0.9540 | 0.494 |
0.413 | 0.6918 | 440 | 0.3923 | 0.955 | 0.9550 | 0.955 | 0.9550 | 0.499 |
0.3977 | 0.7075 | 450 | 0.3884 | 0.955 | 0.9551 | 0.955 | 0.9550 | 0.491 |
0.4066 | 0.7233 | 460 | 0.3869 | 0.959 | 0.9593 | 0.959 | 0.9590 | 0.487 |
0.3908 | 0.7390 | 470 | 0.3878 | 0.956 | 0.9561 | 0.956 | 0.9560 | 0.492 |
0.4041 | 0.7547 | 480 | 0.3872 | 0.958 | 0.9584 | 0.958 | 0.9580 | 0.486 |
0.4191 | 0.7704 | 490 | 0.3945 | 0.952 | 0.9534 | 0.952 | 0.9520 | 0.472 |
0.3443 | 0.7862 | 500 | 0.3932 | 0.949 | 0.9500 | 0.9490 | 0.9490 | 0.477 |
0.3735 | 0.8019 | 510 | 0.3934 | 0.955 | 0.9552 | 0.955 | 0.9550 | 0.489 |
0.3913 | 0.8176 | 520 | 0.3965 | 0.954 | 0.9541 | 0.954 | 0.9540 | 0.494 |
0.4038 | 0.8333 | 530 | 0.3949 | 0.953 | 0.9531 | 0.953 | 0.9530 | 0.493 |
0.4055 | 0.8491 | 540 | 0.3933 | 0.952 | 0.9524 | 0.952 | 0.9520 | 0.486 |
0.4073 | 0.8648 | 550 | 0.3932 | 0.954 | 0.9546 | 0.954 | 0.9540 | 0.482 |
0.4471 | 0.8805 | 560 | 0.3944 | 0.952 | 0.9532 | 0.952 | 0.9520 | 0.474 |
0.4098 | 0.8962 | 570 | 0.3942 | 0.951 | 0.9525 | 0.9510 | 0.9510 | 0.471 |
0.4512 | 0.9119 | 580 | 0.3933 | 0.952 | 0.9534 | 0.952 | 0.9520 | 0.472 |
0.4309 | 0.9277 | 590 | 0.3914 | 0.952 | 0.9534 | 0.952 | 0.9520 | 0.472 |
0.3962 | 0.9434 | 600 | 0.3894 | 0.953 | 0.9543 | 0.9530 | 0.9530 | 0.473 |
0.4242 | 0.9591 | 610 | 0.3878 | 0.953 | 0.9543 | 0.9530 | 0.9530 | 0.473 |
0.3824 | 0.9748 | 620 | 0.3869 | 0.954 | 0.9552 | 0.954 | 0.9540 | 0.474 |
0.3837 | 0.9906 | 630 | 0.3867 | 0.954 | 0.9552 | 0.954 | 0.9540 | 0.474 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1