metadata
base_model: BAAI/bge-m3
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4173
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
L'Espai d'escalada és una instal·lació municipal en forma de túnel a una
sala interior, amb una llargada de 10m, una amplada de 4,6m i una alçada
de 4m.
sentences:
- >-
Quin és el registre on es comprova la inscripció dels estrangers amb
ciutadania de l'Espai Econòmic Europeu?
- >-
On es pot trobar les bases generals de les convocatòries de selecció de
personal de l'Ajuntament?
- Quina és la llargada de l'Espai d'Escalada?
- source_sentence: Les activitats s’organitzen per setmanes.
sentences:
- Quin és el format en què es desenvolupen les activitats de l'Estiu Jove?
- Quin és el paper del subjecte passiu en la gestió de pagaments?
- Quin és el benefici de les subvencions?
- source_sentence: >-
Les Estades Esportives cerquen que els infants aprenguin a relacionar-se i
a compartir mitjançant l'esport, experiències i vivències amb d'altres
infants amb qui no estan en contacte durant la resta de l'any.
sentences:
- Quin és el propòsit de l'ajut per a la creació de noves empreses?
- Quin és el propòsit de la llicència de parcel·lació?
- Quin és el benefici principal de les Estades Esportives?
- source_sentence: >-
Declaració tributària mitjançant la qual es sol·licita la baixa d'una
activitat de la Taxa pel servei municipal complementari de recollida,
tractament i eliminació de residus comercials.
sentences:
- Quin és el format de la Declaració de baixa?
- >-
Quin és el resultat de justificar una sol·licitud de canvi a les estades
esportives?
- Quin és el període de celebració de la Fira d'Art de Sitges?
- source_sentence: >-
Les entitats inscrites en el Registre resten obligades a comunicar a
l’Ajuntament qualsevol modificació en les seves dades registrals, podent
sol·licitar la seva cancel·lació o comunicant la seva dissolució.
sentences:
- >-
Quin és el procediment per cancel·lar la inscripció d'una entitat al
Registre municipal d'entitats?
- >-
Quin és el propòsit de la quota del servei de les Llars d'Infants
Municipals?
- >-
Quin és el paper de les entitats de protecció dels animals en la gestió
de les colònies urbanes felines?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.08620689655172414
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.21551724137931033
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3275862068965517
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5107758620689655
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08620689655172414
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07183908045977011
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06551724137931034
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05107758620689654
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08620689655172414
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21551724137931033
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3275862068965517
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5107758620689655
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.26401643418499254
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1896731321839082
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2150866107809785
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.08405172413793104
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.20905172413793102
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.31896551724137934
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08405172413793104
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.069683908045977
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06379310344827585
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08405172413793104
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.20905172413793102
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.31896551724137934
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2594763687925116
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.18673713738368922
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21319033477988852
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.08620689655172414
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.21120689655172414
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32112068965517243
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5129310344827587
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08620689655172414
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07040229885057471
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06422413793103447
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.051293103448275854
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08620689655172414
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21120689655172414
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.32112068965517243
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5129310344827587
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2646539120704089
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1899279898741108
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21554766038692458
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.08189655172413793
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.20474137931034483
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.30603448275862066
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5043103448275862
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08189655172413793
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0682471264367816
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.061206896551724135
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05043103448275862
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08189655172413793
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.20474137931034483
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.30603448275862066
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5043103448275862
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.25554093803691474
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1807856116584566
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.20657861277416045
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.08405172413793104
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.20043103448275862
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3146551724137931
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.49137931034482757
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08405172413793104
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0668103448275862
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06293103448275862
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04913793103448275
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08405172413793104
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.20043103448275862
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3146551724137931
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.49137931034482757
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2516576518560222
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1794651409414343
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.20584710715396837
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.07974137931034483
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2025862068965517
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3017241379310345
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4956896551724138
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07974137931034483
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.06752873563218391
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0603448275862069
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04956896551724138
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07974137931034483
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2025862068965517
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3017241379310345
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4956896551724138
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2527082338557514
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.17959085933223878
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2058214047481906
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("adriansanz/sitgrsBAAIbge-m3-290824")
sentences = [
'Les entitats inscrites en el Registre resten obligades a comunicar a l’Ajuntament qualsevol modificació en les seves dades registrals, podent sol·licitar la seva cancel·lació o comunicant la seva dissolució.',
"Quin és el procediment per cancel·lar la inscripció d'una entitat al Registre municipal d'entitats?",
'Quin és el paper de les entitats de protecció dels animals en la gestió de les colònies urbanes felines?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0862 |
cosine_accuracy@3 |
0.2155 |
cosine_accuracy@5 |
0.3276 |
cosine_accuracy@10 |
0.5108 |
cosine_precision@1 |
0.0862 |
cosine_precision@3 |
0.0718 |
cosine_precision@5 |
0.0655 |
cosine_precision@10 |
0.0511 |
cosine_recall@1 |
0.0862 |
cosine_recall@3 |
0.2155 |
cosine_recall@5 |
0.3276 |
cosine_recall@10 |
0.5108 |
cosine_ndcg@10 |
0.264 |
cosine_mrr@10 |
0.1897 |
cosine_map@100 |
0.2151 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0841 |
cosine_accuracy@3 |
0.2091 |
cosine_accuracy@5 |
0.319 |
cosine_accuracy@10 |
0.5 |
cosine_precision@1 |
0.0841 |
cosine_precision@3 |
0.0697 |
cosine_precision@5 |
0.0638 |
cosine_precision@10 |
0.05 |
cosine_recall@1 |
0.0841 |
cosine_recall@3 |
0.2091 |
cosine_recall@5 |
0.319 |
cosine_recall@10 |
0.5 |
cosine_ndcg@10 |
0.2595 |
cosine_mrr@10 |
0.1867 |
cosine_map@100 |
0.2132 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0862 |
cosine_accuracy@3 |
0.2112 |
cosine_accuracy@5 |
0.3211 |
cosine_accuracy@10 |
0.5129 |
cosine_precision@1 |
0.0862 |
cosine_precision@3 |
0.0704 |
cosine_precision@5 |
0.0642 |
cosine_precision@10 |
0.0513 |
cosine_recall@1 |
0.0862 |
cosine_recall@3 |
0.2112 |
cosine_recall@5 |
0.3211 |
cosine_recall@10 |
0.5129 |
cosine_ndcg@10 |
0.2647 |
cosine_mrr@10 |
0.1899 |
cosine_map@100 |
0.2155 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0819 |
cosine_accuracy@3 |
0.2047 |
cosine_accuracy@5 |
0.306 |
cosine_accuracy@10 |
0.5043 |
cosine_precision@1 |
0.0819 |
cosine_precision@3 |
0.0682 |
cosine_precision@5 |
0.0612 |
cosine_precision@10 |
0.0504 |
cosine_recall@1 |
0.0819 |
cosine_recall@3 |
0.2047 |
cosine_recall@5 |
0.306 |
cosine_recall@10 |
0.5043 |
cosine_ndcg@10 |
0.2555 |
cosine_mrr@10 |
0.1808 |
cosine_map@100 |
0.2066 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0841 |
cosine_accuracy@3 |
0.2004 |
cosine_accuracy@5 |
0.3147 |
cosine_accuracy@10 |
0.4914 |
cosine_precision@1 |
0.0841 |
cosine_precision@3 |
0.0668 |
cosine_precision@5 |
0.0629 |
cosine_precision@10 |
0.0491 |
cosine_recall@1 |
0.0841 |
cosine_recall@3 |
0.2004 |
cosine_recall@5 |
0.3147 |
cosine_recall@10 |
0.4914 |
cosine_ndcg@10 |
0.2517 |
cosine_mrr@10 |
0.1795 |
cosine_map@100 |
0.2058 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0797 |
cosine_accuracy@3 |
0.2026 |
cosine_accuracy@5 |
0.3017 |
cosine_accuracy@10 |
0.4957 |
cosine_precision@1 |
0.0797 |
cosine_precision@3 |
0.0675 |
cosine_precision@5 |
0.0603 |
cosine_precision@10 |
0.0496 |
cosine_recall@1 |
0.0797 |
cosine_recall@3 |
0.2026 |
cosine_recall@5 |
0.3017 |
cosine_recall@10 |
0.4957 |
cosine_ndcg@10 |
0.2527 |
cosine_mrr@10 |
0.1796 |
cosine_map@100 |
0.2058 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,173 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 8 tokens
- mean: 48.75 tokens
- max: 125 tokens
|
- min: 10 tokens
- mean: 21.07 tokens
- max: 47 tokens
|
- Samples:
positive |
anchor |
Els ajuts per a la realització d'activitats en el lleure esportiu estan destinats a les entitats sense ànim de lucre que desenvolupen activitats esportives i de lleure. |
Quins són els sectors que es beneficien dels ajuts? |
En el certificat s'indiquen les dades de planejament vigent, classificació del sòl, qualificació urbanística, condicions de l’edificació i usos admesos referides a una finca o solar concreta. |
Quin és el contingut de les condicions de l'edificació en el certificat d'aprofitament urbanístic? |
Aportació de documentació. Ajuts per compensar la disminució d'ingressos de les empreses o establiments del sector de l'hosteleria i restauració afectats per les mesures adoptades per la situació de crisis provocada pel SARS-CoV2 |
Quin és el paper dels ajuts en la situació de crisis? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
num_train_epochs
: 10
lr_scheduler_type
: cosine
warmup_ratio
: 0.2
bf16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 10
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.2
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_1024_cosine_map@100 |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.6130 |
10 |
3.0594 |
- |
- |
- |
- |
- |
- |
0.9808 |
16 |
- |
0.2047 |
0.1922 |
0.2020 |
0.2016 |
0.1774 |
0.2115 |
1.2261 |
20 |
1.525 |
- |
- |
- |
- |
- |
- |
1.8391 |
30 |
0.7434 |
- |
- |
- |
- |
- |
- |
1.9617 |
32 |
- |
0.2186 |
0.2003 |
0.2102 |
0.2092 |
0.1870 |
0.2101 |
2.4521 |
40 |
0.4451 |
- |
- |
- |
- |
- |
- |
2.9425 |
48 |
- |
0.2083 |
0.2054 |
0.2091 |
0.2118 |
0.2009 |
0.2140 |
3.0651 |
50 |
0.2518 |
- |
- |
- |
- |
- |
- |
3.6782 |
60 |
0.1801 |
- |
- |
- |
- |
- |
- |
3.9847 |
65 |
- |
0.2135 |
0.2071 |
0.2037 |
0.2115 |
0.2030 |
0.2191 |
4.2912 |
70 |
0.1483 |
- |
- |
- |
- |
- |
- |
4.9042 |
80 |
0.0893 |
- |
- |
- |
- |
- |
- |
4.9655 |
81 |
- |
0.2066 |
0.2053 |
0.2057 |
0.2137 |
0.1982 |
0.2176 |
5.5172 |
90 |
0.0748 |
- |
- |
- |
- |
- |
- |
5.9464 |
97 |
- |
0.2171 |
0.2113 |
0.2086 |
0.2178 |
0.2120 |
0.2193 |
6.1303 |
100 |
0.064 |
- |
- |
- |
- |
- |
- |
6.7433 |
110 |
0.0458 |
- |
- |
- |
- |
- |
- |
6.9885 |
114 |
- |
0.2294 |
0.2132 |
0.2151 |
0.2227 |
0.2054 |
0.2138 |
7.3563 |
120 |
0.0436 |
- |
- |
- |
- |
- |
- |
7.9693 |
130 |
0.0241 |
0.2133 |
0.2083 |
0.2096 |
0.2138 |
0.2080 |
0.2124 |
8.5824 |
140 |
0.021 |
- |
- |
- |
- |
- |
- |
8.9502 |
146 |
- |
0.216 |
0.2074 |
0.2081 |
0.2162 |
0.2094 |
0.2177 |
9.1954 |
150 |
0.0237 |
- |
- |
- |
- |
- |
- |
9.8084 |
160 |
0.0145 |
0.2151 |
0.2058 |
0.2066 |
0.2155 |
0.2058 |
0.2132 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.0.dev0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}