metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 2404v6
results: []
2404v6
This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5736
- Accuracy: 0.8487
- Precision: 0.8491
- Recall: 0.8487
- F1: 0.8487
- Ratio: 0.4832
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 4
- num_epochs: 4
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
---|---|---|---|---|---|---|---|---|
3.6992 | 0.2597 | 10 | 1.6456 | 0.5378 | 0.5416 | 0.5378 | 0.5270 | 0.3487 |
1.4527 | 0.5195 | 20 | 1.1248 | 0.5336 | 0.5398 | 0.5336 | 0.5147 | 0.6975 |
0.9494 | 0.7792 | 30 | 0.9286 | 0.5756 | 0.6051 | 0.5756 | 0.5437 | 0.7647 |
0.9076 | 1.0390 | 40 | 0.8154 | 0.6849 | 0.6855 | 0.6849 | 0.6846 | 0.5294 |
0.8356 | 1.2987 | 50 | 0.7335 | 0.7647 | 0.7659 | 0.7647 | 0.7644 | 0.5336 |
0.7475 | 1.5584 | 60 | 0.7286 | 0.7437 | 0.7803 | 0.7437 | 0.7350 | 0.6807 |
0.7234 | 1.8182 | 70 | 0.6457 | 0.8025 | 0.8027 | 0.8025 | 0.8025 | 0.4874 |
0.67 | 2.0779 | 80 | 0.6208 | 0.8025 | 0.8043 | 0.8025 | 0.8022 | 0.5378 |
0.5994 | 2.3377 | 90 | 0.6106 | 0.8235 | 0.8236 | 0.8235 | 0.8235 | 0.4916 |
0.666 | 2.5974 | 100 | 0.5912 | 0.8361 | 0.8363 | 0.8361 | 0.8361 | 0.5126 |
0.6142 | 2.8571 | 110 | 0.5853 | 0.8319 | 0.8320 | 0.8319 | 0.8319 | 0.5084 |
0.6181 | 3.1169 | 120 | 0.5866 | 0.8361 | 0.8373 | 0.8361 | 0.8360 | 0.5294 |
0.5555 | 3.3766 | 130 | 0.5762 | 0.8487 | 0.8496 | 0.8487 | 0.8486 | 0.4748 |
0.5658 | 3.6364 | 140 | 0.5751 | 0.8487 | 0.8496 | 0.8487 | 0.8486 | 0.4748 |
0.5777 | 3.8961 | 150 | 0.5736 | 0.8487 | 0.8491 | 0.8487 | 0.8487 | 0.4832 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1