2404v6 / README.md
adriansanz's picture
newmodel
11c8327 verified
|
raw
history blame
3.2 kB
metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: 2404v6
    results: []

2404v6

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5736
  • Accuracy: 0.8487
  • Precision: 0.8491
  • Recall: 0.8487
  • F1: 0.8487
  • Ratio: 0.4832

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 4
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
3.6992 0.2597 10 1.6456 0.5378 0.5416 0.5378 0.5270 0.3487
1.4527 0.5195 20 1.1248 0.5336 0.5398 0.5336 0.5147 0.6975
0.9494 0.7792 30 0.9286 0.5756 0.6051 0.5756 0.5437 0.7647
0.9076 1.0390 40 0.8154 0.6849 0.6855 0.6849 0.6846 0.5294
0.8356 1.2987 50 0.7335 0.7647 0.7659 0.7647 0.7644 0.5336
0.7475 1.5584 60 0.7286 0.7437 0.7803 0.7437 0.7350 0.6807
0.7234 1.8182 70 0.6457 0.8025 0.8027 0.8025 0.8025 0.4874
0.67 2.0779 80 0.6208 0.8025 0.8043 0.8025 0.8022 0.5378
0.5994 2.3377 90 0.6106 0.8235 0.8236 0.8235 0.8235 0.4916
0.666 2.5974 100 0.5912 0.8361 0.8363 0.8361 0.8361 0.5126
0.6142 2.8571 110 0.5853 0.8319 0.8320 0.8319 0.8319 0.5084
0.6181 3.1169 120 0.5866 0.8361 0.8373 0.8361 0.8360 0.5294
0.5555 3.3766 130 0.5762 0.8487 0.8496 0.8487 0.8486 0.4748
0.5658 3.6364 140 0.5751 0.8487 0.8496 0.8487 0.8486 0.4748
0.5777 3.8961 150 0.5736 0.8487 0.8491 0.8487 0.8487 0.4832

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1