2404v5 / README.md
adriansanz's picture
newmodel
91bd76e verified
metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: 2404v5
    results: []

2404v5

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6586
  • Accuracy: 0.8403
  • Precision: 0.8407
  • Recall: 0.8403
  • F1: 0.8403
  • Ratio: 0.5168

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 4
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
3.0551 0.1626 10 1.7145 0.5 0.5 0.5 0.3733 0.0504
1.0346 0.3252 20 0.8860 0.5336 0.5558 0.5336 0.4822 0.8151
0.8531 0.4878 30 0.8174 0.5672 0.6156 0.5672 0.5166 0.1765
0.8279 0.6504 40 0.7147 0.7563 0.7928 0.7563 0.7485 0.6765
0.744 0.8130 50 0.6403 0.8067 0.8099 0.8067 0.8062 0.5504
0.6594 0.9756 60 0.6299 0.7983 0.8004 0.7983 0.7980 0.5420
0.5973 1.1382 70 0.6320 0.8193 0.8204 0.8193 0.8192 0.5294
0.5934 1.3008 80 0.6306 0.8151 0.8184 0.8151 0.8147 0.4496
0.5529 1.4634 90 0.6442 0.8193 0.8195 0.8193 0.8193 0.5126
0.5618 1.6260 100 0.6186 0.8193 0.8204 0.8193 0.8192 0.5294
0.5632 1.7886 110 0.5845 0.8361 0.8373 0.8361 0.8360 0.5294
0.5886 1.9512 120 0.5752 0.8361 0.8367 0.8361 0.8361 0.5210
0.5596 2.1138 130 0.5760 0.8403 0.8407 0.8403 0.8403 0.5168
0.4964 2.2764 140 0.6181 0.8361 0.8367 0.8361 0.8361 0.4790
0.5014 2.4390 150 0.6422 0.8361 0.8381 0.8361 0.8359 0.5378
0.5251 2.6016 160 0.6033 0.8403 0.8428 0.8403 0.8401 0.5420
0.4723 2.7642 170 0.5839 0.8487 0.8503 0.8487 0.8486 0.5336
0.4864 2.9268 180 0.5837 0.8613 0.8616 0.8613 0.8613 0.5126
0.4512 3.0894 190 0.5973 0.8487 0.8491 0.8487 0.8487 0.5168
0.477 3.2520 200 0.6159 0.8403 0.8404 0.8403 0.8403 0.5084
0.4198 3.4146 210 0.6523 0.8403 0.8407 0.8403 0.8403 0.5168
0.4322 3.5772 220 0.6646 0.8403 0.8407 0.8403 0.8403 0.5168
0.4889 3.7398 230 0.6632 0.8403 0.8407 0.8403 0.8403 0.5168
0.4409 3.9024 240 0.6589 0.8403 0.8407 0.8403 0.8403 0.5168

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1