2404v2 / README.md
adriansanz's picture
newmod
e59e817 verified
metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: stocks
    results: []

stocks

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6553
  • Accuracy: 0.8101
  • Precision: 0.8111
  • Recall: 0.8101
  • F1: 0.8099
  • Ratio: 0.5289

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 2
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
3.5199 0.1626 10 1.7420 0.5530 0.5581 0.5530 0.5431 0.6477
1.6995 0.3252 20 1.3228 0.5356 0.5554 0.5356 0.4899 0.2007
1.1579 0.4878 30 0.9331 0.5785 0.5796 0.5785 0.5771 0.4423
0.9588 0.6504 40 0.8592 0.6329 0.6340 0.6329 0.6321 0.5450
0.91 0.8130 50 0.8239 0.6738 0.7473 0.6738 0.6477 0.7725
0.8624 0.9756 60 0.8217 0.6 0.7217 0.6 0.5364 0.1295
0.8238 1.1382 70 0.7594 0.7477 0.7802 0.7477 0.7401 0.6705
0.7669 1.3008 80 0.6968 0.7913 0.7922 0.7913 0.7911 0.5289
0.7648 1.4634 90 0.6744 0.8007 0.8015 0.8007 0.8005 0.4738
0.691 1.6260 100 0.6739 0.7993 0.8029 0.7993 0.7987 0.5544
0.6698 1.7886 110 0.6616 0.8067 0.8091 0.8067 0.8063 0.5443
0.6985 1.9512 120 0.6553 0.8101 0.8111 0.8101 0.8099 0.5289

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1