metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: stocks
results: []
stocks
This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6553
- Accuracy: 0.8101
- Precision: 0.8111
- Recall: 0.8101
- F1: 0.8099
- Ratio: 0.5289
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 4
- num_epochs: 2
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
---|---|---|---|---|---|---|---|---|
3.5199 | 0.1626 | 10 | 1.7420 | 0.5530 | 0.5581 | 0.5530 | 0.5431 | 0.6477 |
1.6995 | 0.3252 | 20 | 1.3228 | 0.5356 | 0.5554 | 0.5356 | 0.4899 | 0.2007 |
1.1579 | 0.4878 | 30 | 0.9331 | 0.5785 | 0.5796 | 0.5785 | 0.5771 | 0.4423 |
0.9588 | 0.6504 | 40 | 0.8592 | 0.6329 | 0.6340 | 0.6329 | 0.6321 | 0.5450 |
0.91 | 0.8130 | 50 | 0.8239 | 0.6738 | 0.7473 | 0.6738 | 0.6477 | 0.7725 |
0.8624 | 0.9756 | 60 | 0.8217 | 0.6 | 0.7217 | 0.6 | 0.5364 | 0.1295 |
0.8238 | 1.1382 | 70 | 0.7594 | 0.7477 | 0.7802 | 0.7477 | 0.7401 | 0.6705 |
0.7669 | 1.3008 | 80 | 0.6968 | 0.7913 | 0.7922 | 0.7913 | 0.7911 | 0.5289 |
0.7648 | 1.4634 | 90 | 0.6744 | 0.8007 | 0.8015 | 0.8007 | 0.8005 | 0.4738 |
0.691 | 1.6260 | 100 | 0.6739 | 0.7993 | 0.8029 | 0.7993 | 0.7987 | 0.5544 |
0.6698 | 1.7886 | 110 | 0.6616 | 0.8067 | 0.8091 | 0.8067 | 0.8063 | 0.5443 |
0.6985 | 1.9512 | 120 | 0.6553 | 0.8101 | 0.8111 | 0.8101 | 0.8099 | 0.5289 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1