150524_15ep / README.md
adriansanz's picture
End of training
fef4809 verified
|
raw
history blame
2.5 kB
metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: 080524_epoch_2
    results: []

080524_epoch_2

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6422
  • Accuracy: 0.8151
  • Precision: 0.8285
  • Recall: 0.8151
  • F1: 0.8132
  • Ratio: 0.6008

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 2
  • seed: 47
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 1
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
0.6673 0.1176 10 0.7004 0.7689 0.7885 0.7689 0.7649 0.6303
0.6171 0.2353 20 0.6825 0.7941 0.8155 0.7941 0.7906 0.6303
0.619 0.3529 30 0.6233 0.8193 0.8317 0.8193 0.8176 0.5966
0.5094 0.4706 40 0.6732 0.8025 0.8245 0.8025 0.7991 0.6303
0.5302 0.5882 50 0.6559 0.8151 0.8263 0.8151 0.8135 0.5924
0.5049 0.7059 60 0.6398 0.8067 0.8139 0.8067 0.8056 0.5756
0.5183 0.8235 70 0.6298 0.8067 0.8124 0.8067 0.8058 0.5672
0.5594 0.9412 80 0.6399 0.8109 0.8230 0.8109 0.8091 0.5966

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1