|
--- |
|
license: apache-2.0 |
|
base_model: projecte-aina/roberta-base-ca-v2-cased-te |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: 060524_epoch_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 060524_epoch_2 |
|
|
|
This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6952 |
|
- Accuracy: 0.7437 |
|
- Precision: 0.7569 |
|
- Recall: 0.7437 |
|
- F1: 0.7404 |
|
- Ratio: 0.6134 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 20 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.06 |
|
- lr_scheduler_warmup_steps: 4 |
|
- num_epochs: 1 |
|
- label_smoothing_factor: 0.1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| |
|
| 0.7924 | 0.1626 | 10 | 0.7754 | 0.7101 | 0.7233 | 0.7101 | 0.7057 | 0.3782 | |
|
| 0.641 | 0.3252 | 20 | 0.8257 | 0.7227 | 0.7451 | 0.7227 | 0.7162 | 0.6513 | |
|
| 0.8108 | 0.4878 | 30 | 0.7629 | 0.7563 | 0.7564 | 0.7563 | 0.7563 | 0.4916 | |
|
| 0.736 | 0.6504 | 40 | 0.7167 | 0.7731 | 0.7751 | 0.7731 | 0.7727 | 0.4580 | |
|
| 0.6973 | 0.8130 | 50 | 0.7419 | 0.7143 | 0.7448 | 0.7143 | 0.7051 | 0.6765 | |
|
| 0.7981 | 0.9756 | 60 | 0.6962 | 0.7437 | 0.7569 | 0.7437 | 0.7404 | 0.6134 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|