Biobert_combo_v2 / README.md
adity12345's picture
End of training
16e5aee verified
metadata
library_name: transformers
base_model: dmis-lab/biobert-base-cased-v1.1
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: Biobert_combo_v2
    results: []

Biobert_combo_v2

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1933
  • Accuracy: 0.924
  • Auc: 0.978
  • Precision: 0.938
  • Recall: 0.938
  • F1: 0.938
  • F1-macro: 0.919
  • F1-micro: 0.924
  • F1-weighted: 0.924

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Auc Precision Recall F1 F1-macro F1-micro F1-weighted
0.4506 0.2661 500 0.2929 0.883 0.944 0.902 0.91 0.906 0.876 0.883 0.883
0.2846 0.5323 1000 0.2606 0.897 0.957 0.904 0.934 0.918 0.89 0.897 0.897
0.2462 0.7984 1500 0.2316 0.907 0.966 0.915 0.938 0.926 0.901 0.907 0.907
0.2337 1.0644 2000 0.2297 0.91 0.967 0.926 0.928 0.927 0.904 0.91 0.91
0.21 1.3305 2500 0.2212 0.911 0.97 0.934 0.922 0.928 0.906 0.911 0.911
0.2033 1.5967 3000 0.2181 0.913 0.972 0.925 0.935 0.93 0.908 0.913 0.913
0.2029 1.8628 3500 0.2109 0.916 0.974 0.92 0.946 0.933 0.91 0.916 0.915
0.1948 2.1288 4000 0.2030 0.921 0.975 0.94 0.931 0.935 0.916 0.921 0.921
0.1812 2.3949 4500 0.2093 0.918 0.974 0.933 0.935 0.934 0.913 0.918 0.918
0.1822 2.6611 5000 0.1996 0.92 0.976 0.933 0.939 0.936 0.916 0.92 0.92
0.1818 2.9272 5500 0.1945 0.923 0.977 0.936 0.94 0.938 0.918 0.923 0.923
0.1707 3.1932 6000 0.1955 0.923 0.977 0.946 0.929 0.937 0.919 0.923 0.923
0.1635 3.4593 6500 0.2019 0.922 0.977 0.935 0.939 0.937 0.917 0.922 0.922
0.1747 3.7255 7000 0.1983 0.923 0.977 0.931 0.945 0.938 0.918 0.923 0.923
0.1735 3.9916 7500 0.1956 0.923 0.978 0.936 0.941 0.938 0.919 0.923 0.923
0.1646 4.2576 8000 0.1994 0.921 0.977 0.933 0.94 0.937 0.916 0.921 0.921
0.1616 4.5238 8500 0.1925 0.924 0.978 0.942 0.934 0.938 0.919 0.924 0.924
0.1615 4.7899 9000 0.1933 0.924 0.978 0.938 0.938 0.938 0.919 0.924 0.924

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.2